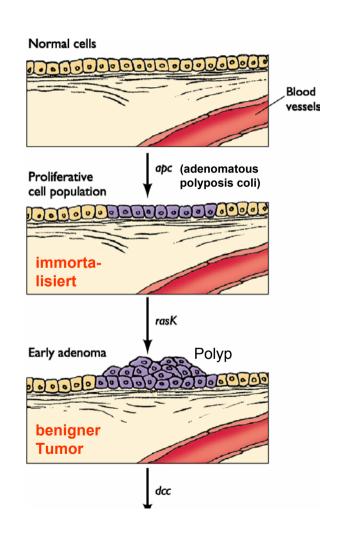
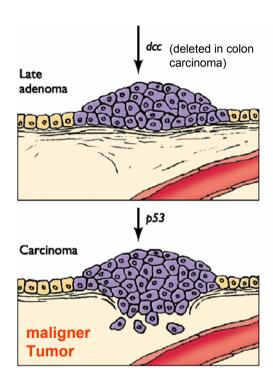
Molekularbiologie IV: Virologie

Transformation und Onkogenese

Ralf Bartenschlager

Abteilung Molekulare Virologie, Hygiene Institut INF 345, 1.OG

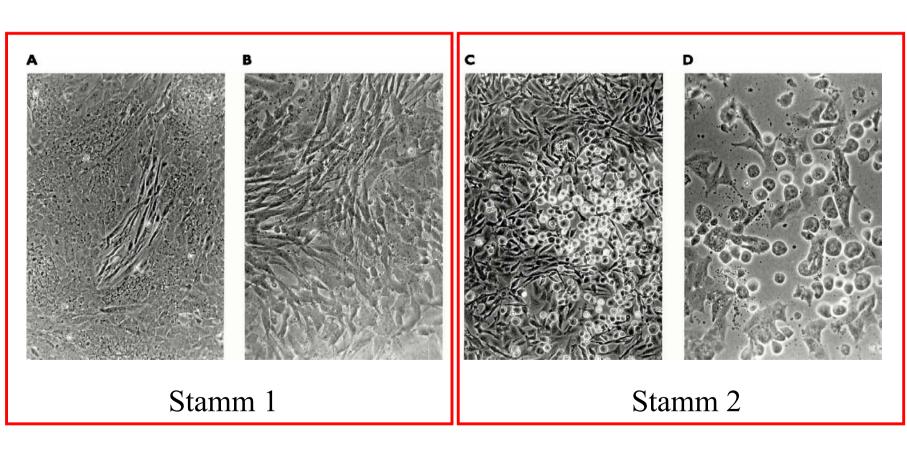

http://molecular-virology.uni-hd.de

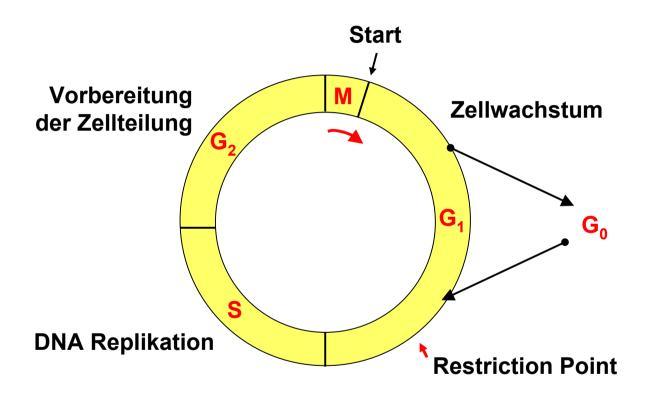

Transformation und Onkogenese

- Tumore eine der Haupttodesursachen weltweit; z.B. 500.000 Erkrankungen/a in den USA
- Bei ca. 20% aller menschl. Tumoren sind Viren wichtiger Kofaktor (80% der Zervixkarzinome)
- Entstehung ist Mehrstufenprozess
 - unbegrenzte Zellteilung (Immortalisierung)
 - begrenzte Zellansammlung (benigner Tumor)
 - unbegrenzte Zellansammlung (maligner Tumor)
 - Invasion des umliegenden Gewebes
 - Dissemination

Mutationen Virale
in zellulären Infektionen
Genen

Entstehung eines Kolonkarzinoms

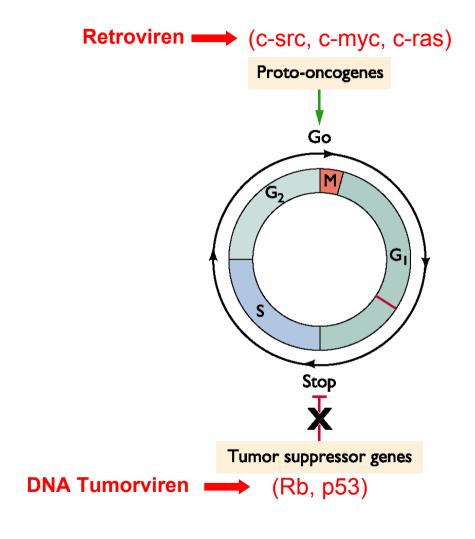



Unterschied normale vs. transformierte Zelle

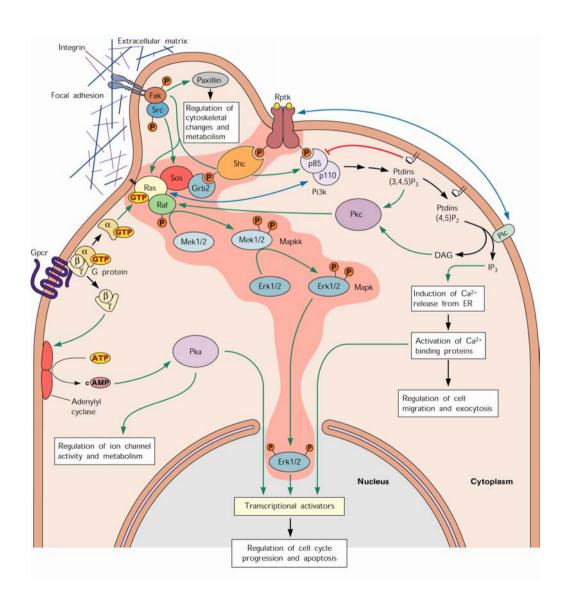
Normale Zelle	Transformierte Zelle
begrenzte Anzahl von Zellteilungen (ca. 50)	unbegrenztes Zellwachstum (Immortalisierung)
Abhängigkeit von Wachstumsfaktoren	reduzierte Abhängigkeit/Verlust der Abhängigkeit
	von Wachstumsfaktoren
Kontakthemmung	Verlust der Kontakthemmung (Foci)
Wachstum auf festen Oberflächen	Wachstum in Weichagar
keine Tumorbildung im Versuchstier	tumorigen im Versuchstier
keine morpholog. und physiolog. Änderungen	morpholog. u. physiolog. Veränderungen (z.B. Abrundung, Streßfasern, Metabolismus)

Entstehung von Foci nach Infektion aviärer Zellen mit zwei verschiedenen Stämmen des Rous Sarcoma Virus

Phasen des Zellzyklus



Dauer: Ca. 24 h (Zellkultur)


10 - 60 Min (X. laevis Embryonen)

Jahre (Zellen in G_o)

Positive und negative Regulation des Zellzyklus

Wichtige zelluläre Signaltransduktionswege: Aktivierung der Map-Kinase Kaskade

Tyr-Kinase Rezeptoren z.B. EGF, PDGF

Kinasen

- Src
- Raf
- Fak (focal adhesion)

G-Proteine

Ras

Entdeckung onkogener Viren

Ellermann und Bang (1908): Leukämie bei Vögeln übertragbar durch filtriertes Serum

P. Rous (1911): Übertragung von Sarkomen auf Hühner durch zellfreie Extrakte (Rous Sarkoma Virus)

R. Shope (1933): Entdeckung der Papillomaviren

Epstein, Achong & Barr (1964): Entdeckung des Epstein-Barr-Virus in Zellen des Burkitt Lymphoms

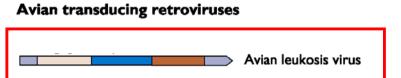
Gallo, Miyoshi & Hinuma (1980/82): Entdeckung des Erregers der adulten T-Zell Leukämie (HTLV-1)

Chang u. Mitarbeiter (1994): Entdeckung des humanen Herpesvirus Typ 8 in Zellen des Kaposi Sarkoms

Eigenschaften virus-assoziierter Tumore

- Transformation ist zumeist Ergebnis der Virusinfektion
- Integration von zumindest Teilen des Virusgenoms ins Wirtszellgenom
- Transformation ist das Ergebnis der Expression von Virusgenprodukten oder der Integration
- Zumeist keine infektiösen Nachkommenviren von der Tumorzelle
- Mechanismen der Transformation durch virale Proteine oft ähnlich

Viren, die Tumore erzeugen können


Table 16.2 Oncogenic viruses and cancer **Families Associated cancers RNA viruses DNA** viruses

ca. 20% aller menschlichen Tumoren sind mit einem von 6 Viren assoziiert

Onkogene Retroviren

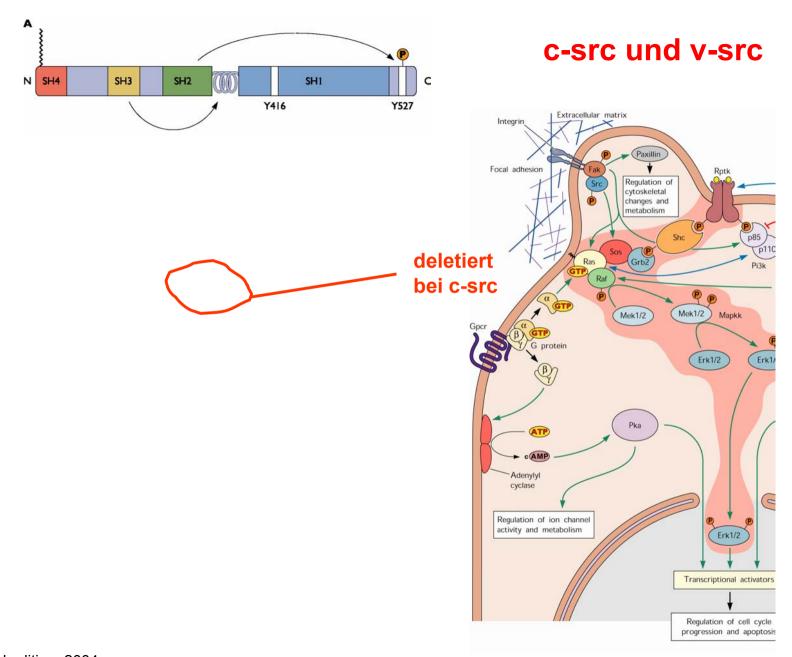
Eigenschaft Charakteristik	Transduzierende Viren	Nichttransduzierende Viren	Nichttransduzierende Viren mit langer Latenzzeit			
Effizienz der Tumorinduktion	hoch (ca. 100%)	hoch bis mittel	sehr gering (< 5%)			
Latenzzeit	kurz (Tage)	intermediär (Wochen, Monate)	lang (Monate, Jahre)			
Erreger	Rekombinantes Viren, zumeist	intaktes Virus,	intaktes Virus,			
	defekt	replikationskompetent	replikationskompetent			
Onkogenes Element	zell-abgeleitetes Onkogen,	Aktivierung eines zellulären	virus-kodiertes, regulatorisches			
	transduziert in Zielzelle	Onkogens durch Provirus	Protein, das die virale			
			Transkription kontrolliert			
Mechanismus	onkogene Transduktion	cis-aktives Provirus	viraler Transaktivator?			
Transformation in Zellkultur	ja	nein	nein			

Genomkarten transduzierender Retroviren von Vögeln und Säugetieren

Mammalian transducing retroviruses

Table 16.7 Functional classes of oncogenes transduced by retrovirus^a

p28 ^{env-sis}	Platelet-derived growth factor (Pdgf)
p28 ^{env-sis}	Platelet-derived growth factor (Pdgf)
gp65 ^{erbB}	Epithelial growth factor (Egf) receptor
gp180 ^{gag-fms}	Colony-stimulating factor 1 (Csf-1) receptor
gp160 ^{env-sea}	Receptor; ligand unknown
gp80 ^{gag-kit}	Hematopoietic receptor; product of the mouse W locus
p68 ^{gag-ros}	Receptor, ligand unknown
	Member of the hematopoietin receptor family
gp37 ^{eyk}	Receptor, ligand unknown
p75 ^{gag-erbA}	Thyroid hormone receptor
-	•
$p21^{ras}$	GTPase
-	GTPase
•	
n47 <i>899-crk</i>	Signal transduction
P	
nn60src	Signal transduction
	Signal transduction
p>0 , po0	oigimi transaction
n 3 Tenv-mos	Required for germ cell maturation
p37************************************	Signal transduction
	Signal transduction
	Signal transduction
poor	Signal transduction
⇒ ∠ E aga-iun	Transcriptional regulator (Ap. 1 compley)
•	Transcriptional regulator (Ap-1 complex) Transcriptional regulator (Ap-1 complex)
1 –	Unknown; possibly transcriptional regulator
	Transcriptional regulator
part, programs	Transcriptional regulator
	Transcriptional regulator
	Transcriptional regulator
n110gag-ski-pol	Transcriptional regulator
DOWAR-din	Transcriptional regulator of the forkhead/Hnk-3 family
	gp1808ag-fms gp160env-sea gp808ag-kit p688ag-ros p31env-mpl gp37eyk

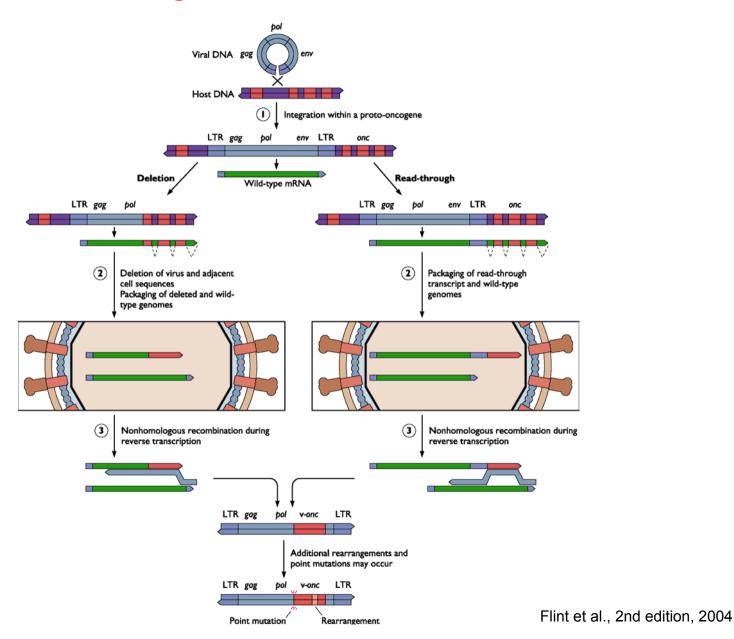

Prinzipen der retroviral transduzierten Onkogene

- konstitutive Aktivierung, bedingt durch spez. Mutationen (häufig)
- zeitlich deregulierte Expression der Onkogene (selten)
- Überexpression der Onkogene (selten)

Die src-Kinase

v-src: erstes retrovirales Protein mit transformierender Eigenschaft

- zytoplasmatische Tyrosinkinase (keine Rezeptorfunktion)
- Reguliert mittelbar die Aktivität von raf und Fa-Kinase (Zytoskelett)
- 4 funktionale Domänen, die notwendig für Transformation
- Regulation der Aktivität durch Phosphorylierung
- Deletion am C-terminus führt zu Verlust der Autoinhibition

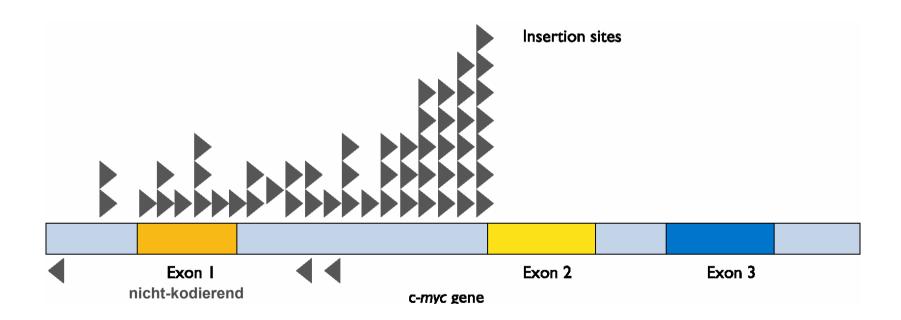


V-myc: zeitlich deregulierte Expression

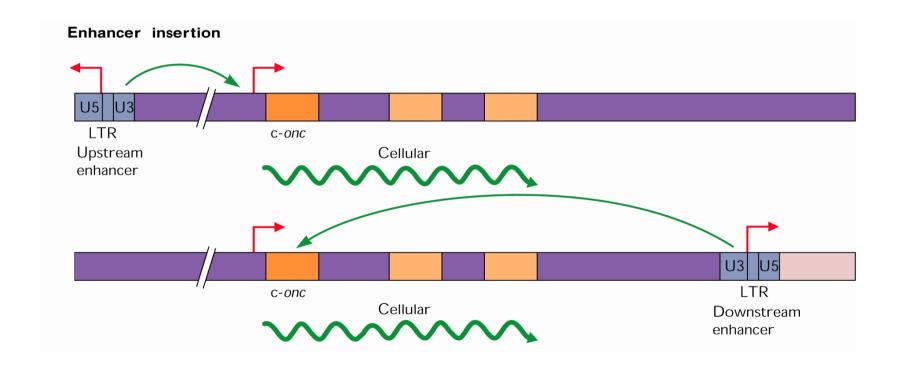
- Strikte Expressionskontrolle, nur in kurzer Phase von G₁
- Keine Synthese in G₀ (Map-Kinase-abhängige Expression)
- myc steigert Transkription vieler zellulärer Gene, u.a. CyclinD (G₁-CdK), E2f
 → Eintritt in Zellzyklus
- Transformation durch zeitlich unkontrollierte Expression (z.B. AMV MH2)

Entstehung transduzierender Retroviren

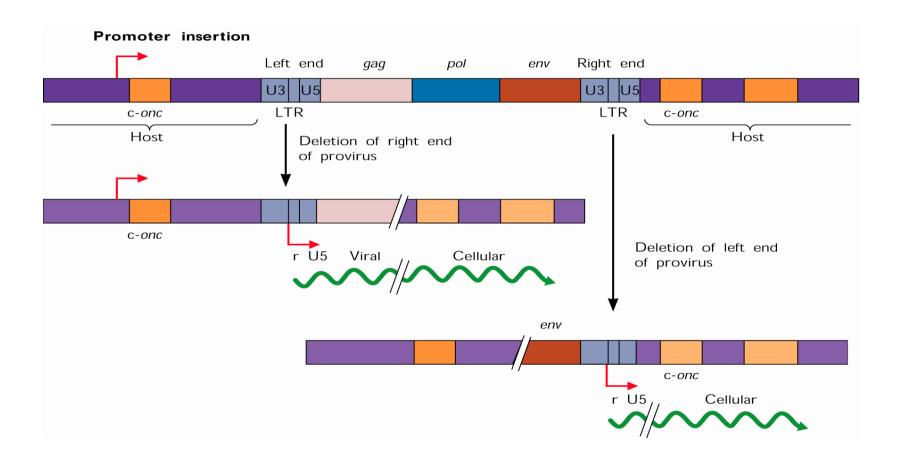
Insertionsbedingte Aktivierung von c-onc durch Retroviren


keine Transduktion von v-onc

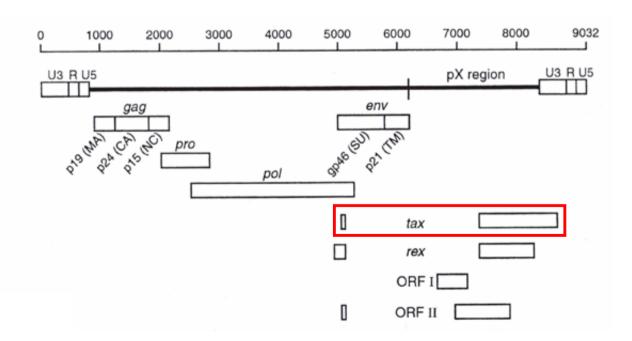
Insertion von Promotor oder Enhancer Element


Inaktivierung eines zellulären Gens

monoklonaler Tumor


Insertionsvermittelte Aktivierung von c-myc bei ALVs

Insertionsbedingte Aktivierung von c-onc durch Retroviren

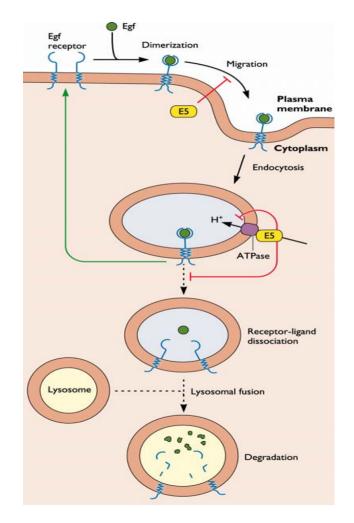


Insertionsbedingte Aktivierung von c-onc durch Retroviren

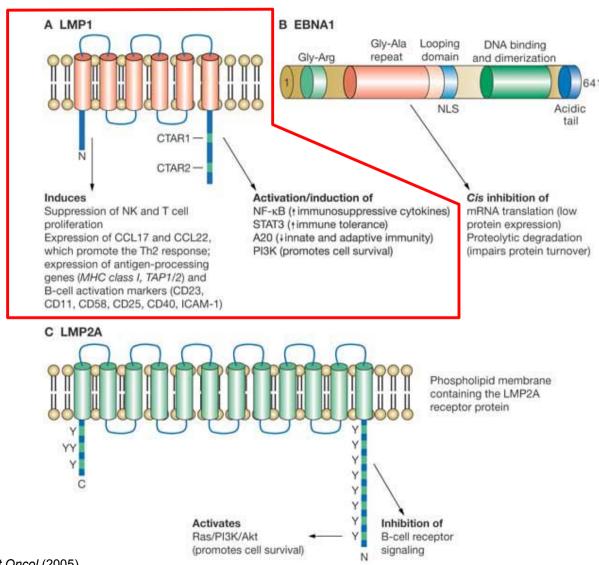
Nicht-transduzierende Retroviren mit langer Latenzzeit

- Bsp.: HTLV-1 → adulte T-Zellleukämie (ATL)
- erstmals 1977 in Japan beschrieben
- Virusisolation aus Leukämiezellen 1980
- komplexes Retrovirus mit viralen, regulatorischen Proteinen

ATL und HTLV-1


- bei allen ATL-Patienten Integrat, aber kein spez. Integrationsort
- monoklonaler Tumor
- kein v-onc
- Tax: Transkriptionsaktivator; steigert Transkription vom 5' LTR Promotor
 - → aktiviert auch versch, zelluläre Gene
- lange Latenz
- kausal nicht ausreichend, aber wichtiger Kofaktor

Transformation bei DNA Viren


- Transformation und produktive Replikation schließen sich gegenseitig aus
 - ∠ Zelle in S-Phase bei abortiver Replikation
- Selten Integration in das Genom der Wirtszelle (Polyomav., Adenov.)
 - → Häufig nur Teile des viralen Genoms erhalten (early Gene)
- Z.T. episomale Persistenz des viralen Genoms (EBV, Papillomav.)
- Transformation durch:
 - ⇒ Beeinflussung der Signaltransduktion
 - ⇒ zelluläre Homologe (bes. große DNA-Viren; keine v-onc)
 - direkten Eingriff in Zellzyklus

Beeinflussung der Signaltransduktion:

Steigerung der Oberflächenexpression von EGF-Rezeptor durch HPV E5

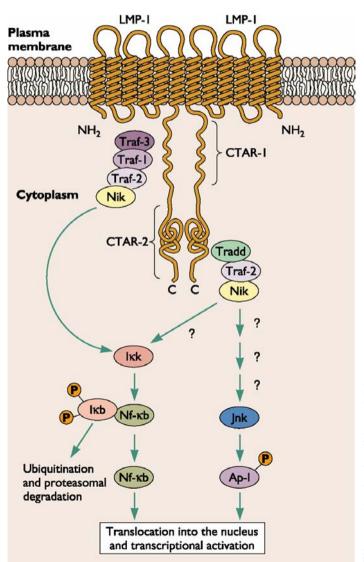
Komplexität der Tumorentstehung am Beispiel von EBV: Virale Proteine in EBV-assoziierten Tumoren

Beeinflussung der Signaltransduktion:

Konstitutive Zellaktivierung durch LMP-1 Protein von EBV

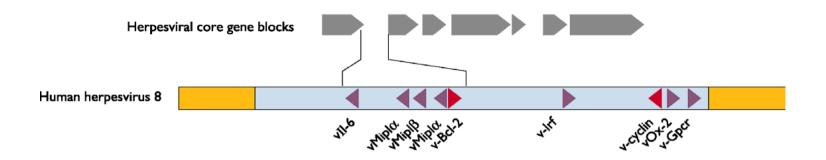
LMP-1 = EBV-latent membrane protein-1

CTAR = C-terminale Aktivierungsregion


Traf = TNF-Rezeptor-assoziierte Proteine

Nik = NFκb-induzierende Kinase

Iκk = Iκb-Kinase


LMP-1 entspricht konstitutiv aktivem Rezeptor

- >Hemmung der Differenzierung epithelialer Zellen
- ► Induktion der Transformation
- Immortalisierung von B-Zellen

Flint et al., 2nd edition, 2004

Homologe zellulärer Gene in den Genomen einiger Herpesviren

Chemokine (vIL-6, vIL-17, v-Mip1 α , v-Mip1 β)

Chemokinrezeptoren (v-Gpcr)

Signaltransduktoren (v-Irf, vOx2)

Zellwachstum (v-cyclin D)

Apoptose (v-Bcl-2)

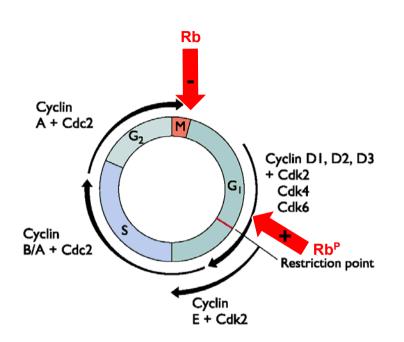
HHV-8 assoziiert mit Kaposi Sarkom (Spindelzelltumor mit ausgeprägter Angiogenese)

v-Gpcr: Homolog zu Chemokinrezeptor, der ohne Ligand aktiv

Morphologische Transformation von Maus 3T3-Zellen

→ Sekretion von vaskulärem, endothelialem Wachstumsfaktor (veGF)

Infektion primärer humaner Endothelzellen

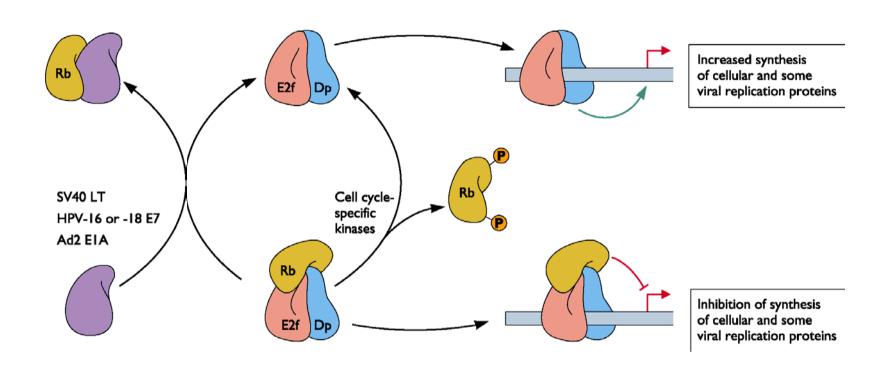

- → Immortalisation
- Spindelzellmorphologie
- gesteigerte Produktion von veGF
- Wachstumsstimulation uninfizierter Zellen


Transformation bei DNA Viren

Transformation durch:

- Beeinflussung der Signaltransduktion
- ⇒ zelluläre Homologe (bes. große DNA-Viren; keine v-onc)

Schalterproteine des Zellzyklus: Retinoblastomprotein

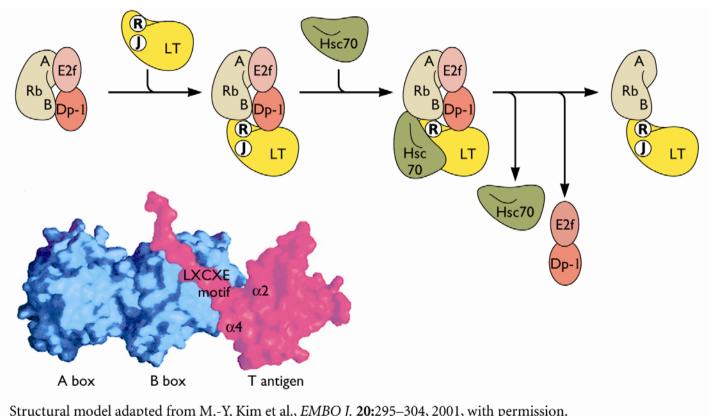

Rb: entdeckt in Retinatumoren

Tumorsuppressor, der Eintritt in die S-Phase reguliert

Phosphorylierung durch CyclinD-abh.Kinase

nukleäres Protein-bindendes Protein

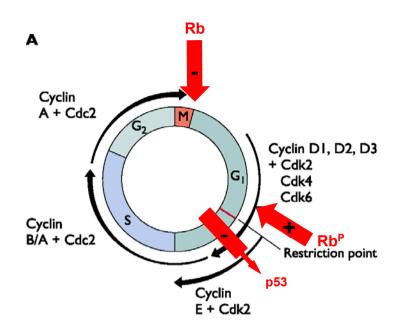
Hemmung der Rb-Funktion durch virale Proteine

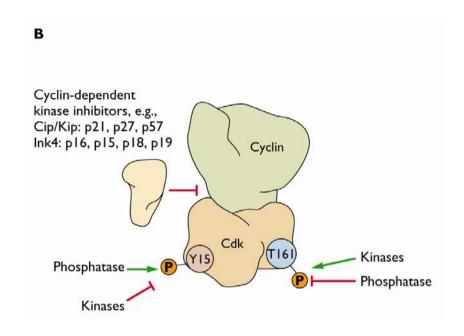


Virale Proteine verdrängen Rb aus Komplex mit E2f

E1A stabilisiert E2f

E7 induziert Degradation von Rb

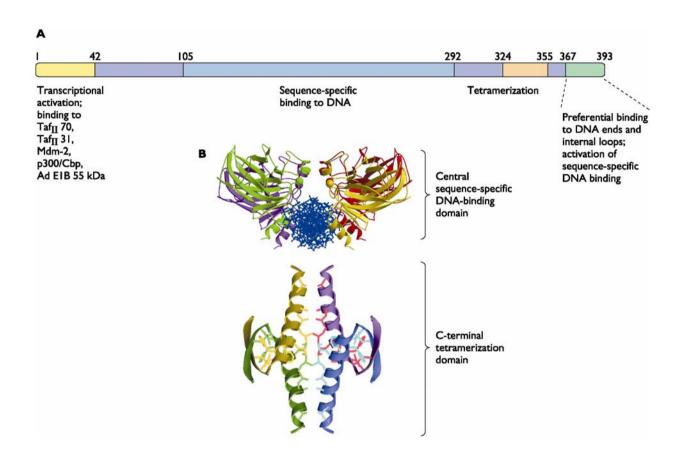

Aktive Dissoziation des Rb-E2F-Komplexes durch SV40 LT



Structural model adapted from M.-Y. Kim et al., EMBO J. 20:295-304, 2001, with permission.

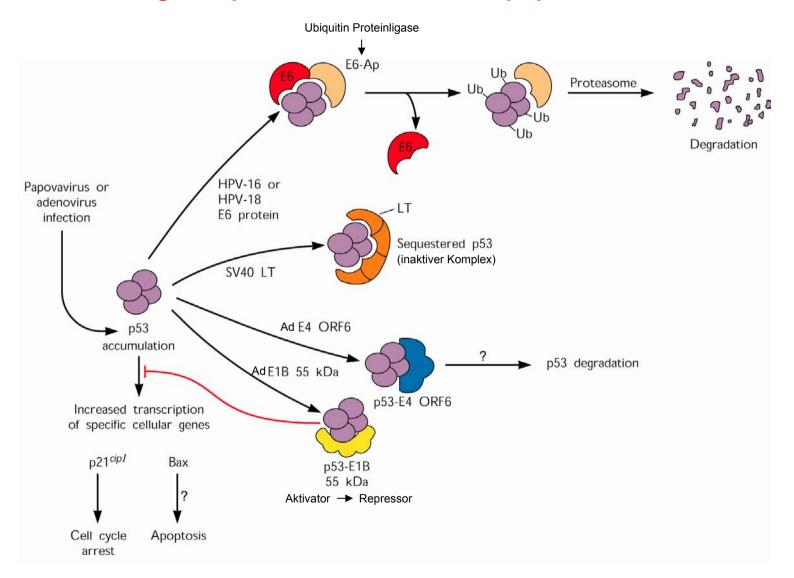
ATP-abhängige, Hsc70-vermittelte Verdrängung des E2f:Dp-1 Heterodimers

Zelluläre Schalterproteine des Zellzyklus:p53



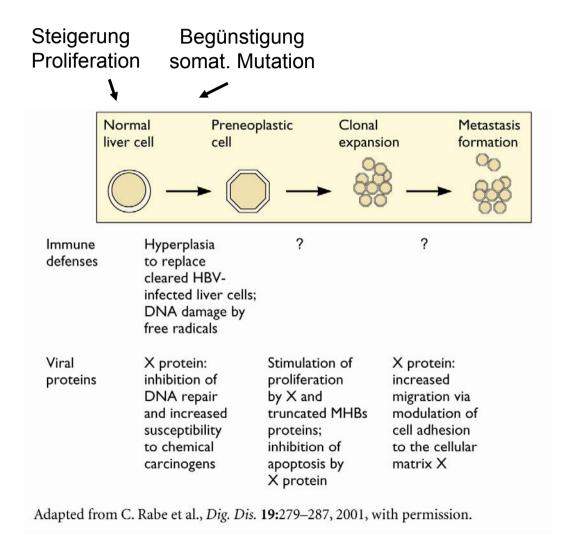
p53: das am häufigsten mutierte Gen in menschl. Tumoren (ca. 65% aller Tumore)

Zellzyklusregulator in Abhängigkeit von DNA-Schäden oder unkontroll. Eintritt in S-Phase reguliert G₁/S arrest (geringe DNA-Schäden)


Apoptose ('irreparable DNA-Schäden')

Das humane p53 Protein

- DNA-bindendes Protein; Transkriptionsregulator → CdK-Inhibitoren (p21)
- Tetramerisierung f
 ür DNA-Bindung essentiell
- [p53] strikt reguliert (gering im Normalzustand, hoch bei DNA-Schäden oder Induktion)
- [p53] reguliert durch Mdm-2 Bindung (Ubiquitin Ligase)
- DNA-Bindung und Transaktivierung durch Modifikationen im C-terminus reguliert (Phos., Acetyl.)


Inaktivierung von p53 durch adeno- und papovavirale Proteine

Onkogenese der Hepadnaviren (HBV)

- immer auf Grund einer persistenten HBV-Infektion
- persistent Infizierte haben ca. 100-fach höheres Risiko für HCC als Gesunde
- episomale Replikation, keine obligatorische Integration
- In HCCs oft Integration von Teilen des HBV-Genoms in regulatorische Gene (Vit.A-Säure Rezeptor, Zykline)
- Virus ist wichtiger Kofaktor, aber nicht ausreichend für Transformation
 - → konsequente Impfung gegen HBV senkt die Inzidenz des HCCs

Mögliche Rolle von HBV-Proteinen bei der HCC-Entstehung

Vielfalt viraler Transformationsmechanismen

Table 18.10 The	Table 18.10 The diversity of viral transformation mechanisms				Transformation mechanisms			Table 18.10 (continued)			Transformation mechanisms			
Virus	Viral genetic	information in tran	Transforming	Cell cycle	Apoptosis	Immune modulation	Viral genetic	c information in transformed cells		Cell cycle Immune				
	Physical state	functions	functions	progression	Apoptosis	or stimulation		Physical state	Lytic functions	Transforming functions	progression	Apoptosis	modulation or stimulation	
Adenovirus Human subgroup C and A serotypes	Integrated into host genome by random recombination	Lost during integration	E1A and E1B gene products; some E4 proteins	Deregulated; inactivation of pRb family proteins by E1A proteins	Blocked by inactivation of p53 (E1B 55-kDa and E4 Orf 6 proteins) and by the E1B 19-kDa protein, a viral Bcl-2 homolog	Inhibition of transcription of MHC class I genes by sub- group A E1A proteins	Polyomavirus Simian virus 40	Integrated into host genome by random recombination	Lost during integration	LT; sT in some circumstances	Deregulated by inactivation of Rb family proteins by LT and stimulation of Mapk cause cascade signaling by sT	Blocked by inactivation of p53 by LT	None known	
Flavivirus Hepatitis C virus	Not integrated	Noncytolytic, persistent infection of cells that are rapidly dividing	Not known	Not known	Not known	Immune systems kill infected cells; survivors are selected over years of replica- tion; tumor cells escape	Retroviruses Transducing (e.g., Rous sarcoma virus)	Integrated	None	Virally transduced, cell-derived oncogenes	developmental, and cell cycle regulation by inappropriate expression of oncogenes	None	None known	
Hepadnavirus Hepatitis B virus	Episomal; viral sequences are integrated in some hepa- tocellular carcinomas	None	X protein; large or truncated middle B surface proteins	Defects in DNA repair; altered transcription of proto- oncogenes (e.g., cfos, cmyc) and transcriptional regulators (e.g., Nf-xb); direct interaction of X with proteins in growth signaling pathways	by X protein binding to p53		Nontransducing (e.g., Rous- associated viruses 1 and 2) Long latency (e.g., human T-lymphotropic virus type 1)	Integrated	None	Insertional mutagenesis, alteration of cellular proto- oncogenes (or their expression) in vicinity of proviral inte- gration site Viral trans- activor proteins, Tax	Loss of tissue, developmental, and cell cycle regulation by inappropriate expression of wild-type or truncated proto-oncogenes Stimulates T-cell proliferation by induction of Nf-xb and IL-2	Not known	Viral superantigen (murine mam- mary tumor virus, Sag protein) stim- ulates T cells and induces proliferation of B cells Abnormal T-cell proliferation is a critical early event, but other currently unknown changes are required	
Herpesvirus Epstein-Barr virus	Episomal: replicates in concert with host cell genome	Repressed	LMP-1 protein; EBNA-2 and LMP-2 increase production and stability, respect- ively, of LMP-1	Deregulated by constitutive signaling from LMP-1	Blocked; LMP-1 induces synthesis of Bcl-2 family proteins and inhibits signaling from death domain proteins	EBNA-1 are not produced,								
Papillomavirus Human types 16 and 18	Integrated into host genome by random recombination	Lost during integration	E6 and E7 proteins	Deregulated by inactivation of Rb family proteins by E7 protein	Blocked by E6 protein-induced degradation of p53	None known								