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Abstract  
Adverse drug events (ADEs) are a major limitation of drug safety. They are often caused by inappropriate 
selection of dose and the concurrent use of drugs modulating each other (drug interaction). Risk assessment and 
prevention strategies must therefore consider co-administered drugs, individual doses, and their timing. In a new 
approach we evaluated the performance of cross correlation, commonly used in signal processing, to determine 
similarities in patient treatments. To achieve this, patient treatments were modeled as groups of vectors 
representing discrete time intervals. These vectors were cross-correlated and the results evaluated to find clusters 
in time courses indicating similarity in treatment of different patients. 
To evaluate our algorithm, we then created a number of test cases. The focus of this article is on each treatment 
and its pattern in time and dosage. The algorithm successfully produces a relatively low similarity score for cases 
that are completely different with respect to their pattern of time and dosage but high scores when they are equal 
(score of 0.699) or similar (score of 0.528) in their therapies and thus succeeds in having a relatively high 
specificity (27/30). Such an approach might help to considerably reduce the problem of false alarms which 
hampers most existing alerting systems for medication errors or impending ADEs. 
 
Key words – Case based reasoning, temporal abstraction, similarity measure, adverse drug events  
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1. Introduction 

 
Adverse drug events (ADEs) are a major factor limiting safety and effectiveness of drug therapy in modern 
health care systems. For example in the USA an estimated 770,000 people are subject to an ADE during their 
stay in a hospital and about 140,000 of them die because of it [1]. The estimated annual costs are about $4 
billion, of which about half may be avoidable [2]. 
Although not studied thus far there is no evidence to suggest that the problem is much different or substantially 
smaller in Germany. However, there have been some efforts in the last years to overcome this drawback [3 - 5]. 
Computerized physician order entry systems (CPOE), barcode identification, and automated dosing systems 
have been introduced to reduce the errors inherent to the process of administering medication (from the 
prescription process to dispensing) like misspelling, misreading, and confusion of medication or patient data. 
Another effective option is to support the physician during the prescription process with pertinent information 
and decision support on medical therapy [6]. This is the focus of this paper.  
 
It is a common approach to warn the practitioner while he is entering the intended medication for a patient if 
there is an assumed adverse interaction with another drug or with the patient’s state of health. This alert process 
is normally aided by the use of databases containing lists of interactions or other known risk situations [7]. 
Standard practice entails the computer to issue warnings to the user if the patient has drug X or condition Y (e.g. 
allergy) in the presence of which drug Z is known to likely cause an ADE. However, the specificity of such alert 
systems is limited because potentially harmful drug combinations do not result in an ADE in all instances. 
This leads conventional warning systems to issue many false alarms. These warning systems have a rather good 
sensitivity but their poor specificity prompts practitioners to ignore them [8, 9] or to override alerts [10,11]. 
The aim of this ongoing research is to develop an electronic drug prescription system, which more selectively 
identifies risks associated with drug therapy, with more specific alerts and therefore better acceptance than the 
current systems. The proposed algorithm may be a key element in such a system since it will directly influence 
its user-friendliness.  
 

2. Background 

 
In most medical specialties the occurrence of ADEs is a complex process and the circumstances leading to a 
particular event are not always known in detail. While it is often possible to retrospectively identify an ADE it is 
much more difficult to point out exactly what leads to it, especially considering individual variability of 
important pharmacologic processes between different patients [12,13]. In such a relatively uncertain domain it is 
challenging to form sets of clear rules that identify ADEs. Therefore, case similarity suggests itself as an 
approach that may circumvent the problems of characterizing ADEs through sets of rules. 
 
2.1Introduction to case based reasoning (CBR) 

 
CBR is a sub-discipline of artificial intelligence that is based on the assumption of analogy. The main theorem of 
CBR is that if two problems are similar their solutions also are. The mechanics are therefore that a pool of 
problems and their respective solutions within a certain domain is collected. If then a new problem arises the 
pool is searched for the most similar problem. The solution of this already solved problem is then applied to the 
new problem at hand. The solution of the old problem may have to be slightly modified to the new needs (Figure 
1). 
CBR has some intriguing advantages. First it works well in domains where the knowledge is relatively 
rudimentary. Second, in order to build a system it is not necessary to query experts about their way of reasoning. 
Rather records of old cases such as progress notes or standardized charts can be used. Third it is easy to add new 
knowledge in the form of new cases or to adapt existing ones and, therefore, fourth, it is simple to manage and 
maintain an up-to-date base of knowledge [14].  
In our system we want to collect a reference base of detailed medical cases with verified ADEs. If a new case 
arises in practice with striking similarity to a case in the database, then the system should alert the practitioner. 
One problem with this approach is the complexity of modeling time elapsed and temporal interrelationships 
between exposure with different drugs and concurrently developing events. Most drug effects do not only 
depend on pharmacodynamics but are time dependent and often related to pharmacokinetics. Therefore, the 
temporal relationships between drug exposure of a patient and events are essential to assume similarity in 
different cases. 
An earlier approach using CBR and temporal abstraction [15] made it possible to cover the feature space of a 
problem with a fixed set of predictable states this problem can reach. Therefore a case modeling of problems was 
developed which consists of a distribution of different states over time. This is only possible if a predefined set 
of attributes with conceivable value ranges can directly be mapped to the set of medical states. Obviously it is 
not possible to predefine every possibly occurring medical state during treatment. Therefore we aimed to find a 
different case modeling and similarity measure. 



 4 

2.2 Introduction to cross correlation 

 
We took a new approach in using cross-correlation to determine similarities in treatments. In signal processing, 
the cross-correlation function is commonly used to determine similarities between two time dependent signals. 
To determine cross-correlation between two signals we first have to define the correlation between data in 
general. Correlation between two groups of data implies that they move or change with respect to each other in a 
structured way. The correlation coefficient is an indicator for the strength and sense or direction of correlation. 
For N pairs of data (x, y) the correlation coefficient is calculated thus 
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The ‘active part’ of equation (1) is the enumerator summation which tends to zero if there is little common 
movement between x and y and approaches high positive and negative values depending on whether x and y tend 
to move together or in opposite senses. The denominator terms merely have a normalizing effect which delimits 
the range of the correlation coefficient to [-1,1] [16]. 
The correlation coefficient can be used to determine correlation between two sets of data. When measuring the 
correlation between two signals from two time series of discrete numbers it is possible that two signals may have 
common components but different timing. The cross-correlation function (equation (2)) is that function which is 
formed from successive values of the correlation coefficient taken at time shifts k = 1, 2, … n data sampling 
intervals. Different approaches are available to insert y values where the formula would reach beyond the 
interval covered through recorded values. 
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The time shift at which the correlation coefficient reaches its highest value indicates the relative position in time 
where both signals are closest correlated. Therefore the cross-correlation function can be used to identify simple 
time delays between events in two signals. [17] 
 
3. Design considerations and system description 

 
3.1 Definition of terms 

 
For the development of the model and the similarity algorithm the following terminology has been applied  
(1) A treatment is the information about a distinct therapy with an active compound of a drug administered to a 
patient during his hospitalization (e.g. the fact of giving him aspirin). 
(2) A time and dosage pattern is the chronological information about dose and dosing interval of a treatment 
(e.g. every day one 10mg tablet in the morning and two 10mg tablets in the evening). 
(3) A course of treatment is the information of a treatment (1) combined with the corresponding time and dosage 

pattern (2). 
(4) A case is the set of all courses of treatment (3) one patient receives during his stay. This information is used 
equivalent to a CBR case. 
 
3.2 Case modeling 

 
Our modeling of cases is simple. For each treatment, the model includes an identifier for the treatment, as well 
as a vector for the time and dosage pattern which consist of slots for discrete points in time where a treatment 
could have taken place and the particular dose that was given then (Figure 2). Per day, there are five time slots 
for drug administration (morning, noon, evening, bedtime, and night) in the present version of the model. 
 

3.3 Traditional approach 

 
A common approach to compare two different cases of two different patients would be to count the number of 
medically equivalent treatments (e.g. both patients received some sort of aspirin product). This is done by 
interleaving two list searches as described earlier [18]. Depending on the number of equivalent and different 
treatments in both cases, a similarity score can be determined according to Algorithm 1 (Figure 3). Because this 
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algorithm omits the chronological information when those treatments occurred (e.g. two tablets in the morning 
and two in the evening) we call it a ‘no time’ algorithm. 
 
3.4 New algorithm 

 
In medicine, chronological information is an important element for judging the equivalence of different cases. 
For this reason we enhanced the ‘no time’ algorithm by correlating the time and dosage pattern of a treatment in 
one case with the time and dosage pattern of the equivalent treatment in another case. The presented time 
sensitive similarity algorithm consists of four sub-algorithms which are explained below. 
In the first steps our algorithm does not differ from the ‘no time’ algorithm. We have two patient encounters and 
want to determine how similar they are in respect to their cases, which is achieved by comparison of the lists of 
treatments in both cases. Every pair of medically equivalent treatments from each case is marked and put aside 
in a separate list. The number of equivalent treatments is divided by the overall number of treatments. This 
number determines the first half of the similarity score (Algorithm 1 / Figure 3). 
In this first part of the algorithm we want to ensure that the model’s similarity score accounts for both 
similarities and discrepancies. Cases that have matching pairs in two of thirty treatments should not be rated too 
similar even if these two have a very similar pattern in time because we aim to assess the general similarity of 
two cases in respect to their whole courses of drug therapy. 
Next, the time and dosage pattern comparison begins. The temporal part of each course of treatment in each pair 
is cross-correlated. The result is a number that is subsequently normalized to a score between 0 and 1. As we are 
not interested in negative correlation 0 is assigned if formula (2) delivers a negative value. The correlation is 
calculated for every possible step of the time scale (Figure 4). The highest score indicates the relative distance in 
time where both time and dosage patterns have the highest similarity. This score is stored together with the 
corresponding relative time shift. The resulting process creates a list of treatments, their corresponding similarity 
scores, and the corresponding time lag at which the similarity occurred (Algorithm 2). 
In the next step the algorithm parses this list for the relative position in time around which most of the high 
scores gather. It steps through the list building up a histogram over all possible relative positions in time. 
Thereafter the best point of co-occurrence is identified in this histogram by building a triangular weighted sum of 
surrounding values. This sum is shifted over the whole histogram. The time lag with the highest sum is taken as 
optimal (Algorithm 3). 
From the courses of treatment which contribute to such a cluster, the correlation values are summed up and the 
whole sum is normalized. This normalized sum creates the second half of our similarity score (Algorithm 4). 
Both halves of the score, one from the occurrences of treatments and the other from their temporal correlation, 
are summed together to create the overall similarity score. 
 
3. Status Report 

 
To evaluate our algorithm, we thoroughly created 62 abstract test cases. Our main focus at this time is on 
treatments and their corresponding pattern in time and dosage. Therefore, we just modeled the courses of 

treatment omitting other data such as diagnoses or demographic patient data. Those data may also determine the 
similarity of a medical condition and will thus be topic of future research. 
Starting from one standard case consisting of 8 different drugs given at different times and dosages for 10 days 
we developed various ways of how other cases could be different or similar with respect to treatment 
characteristics. We modeled for example a set of 3 interdependent drugs applied in a short period of time as it is 
done e.g. before cardiac catheter examinations. Then this set was altered systematically in time, dosage, and 
drugs in several degrees of alteration. By this we evaluated the algorithms’ response to defined levels of 
difference. We identified twelve different categories of how cases can be similar or dissimilar (Table 1). These 
categories emerge from relating new and known case to each other in a plane defined by the following two axes. 
One of these axes is similarity in treatment. Cases similar on this axis have a similar list of treatments that were 
administered to the patient. Similarity on this axis ignores chronological information. The other axis represents 
similarity in time and dosage patterns. Cases similar on this axis have similar patterns of administration in time 
and dosage. Similarity here completely omits the information to which treatments the time and dosage patterns 
belong.  
Each of the twelve categories contains a value corresponding to a medical assessment. Ideally an algorithm 
assigning a numerical similarity value to different cases in relation to a standard case should rate cases in 
accordance with the respective qualitative particular statements in Table 1. We designed a set of five to six test 
cases per category with 56 having 8, 4 having 7, and 2 having 6 courses of treatment each. The algorithm was 
applied to these test sets. The resulting mean values of overall similarity score are shown in Table 2. In this table, 
a number close to 1 means high similarity, a number closer to 0 means low. 
We also applied the algorithm to a case collection of 882 detailed real medical cases of patients hospitalized in 
internal medicine treated with an average of 10.8 (0, 72) different drugs and hospitalized for a mean length of 
stay of 10.2 (1, 127) days. These cases were collected in an earlier project and were used to confirm that the 



 6 

algorithm suitably scales up to typical size sets of real data. However, because these cases were not classified as 
specified in Table 1 we did not use them to calculate any ratings. For each case the similarity to all other cases in 
the case base was calculated. Several iterations with different thresholds for similarity were made. At each 
iteration, random sample checks were made to evaluate whether the classification of cases with similar ratings 
appeared plausible. According to this evaluation of real cases a similarity threshold of 0.7 turned out to be an 
adequate score to determine whether two cases are sufficiently similar or not. Setting this same threshold for 
similarity at 0.7 the algorithm’s sensitivity on the synthetic test cases was 32/32 and the specificity was 27/30. 
Our algorithm needs an average of 576 milliseconds for the calculation of the similarity of one real medical case 
against the case base of 882 other cases. That is an average of 0.653 milliseconds per single case comparison. 
The computer on which this test was executed was equipped with an Intel Pentium 4 2.4 GHz processor and with 
512 Mb RAM. The algorithm is implemented in Java 1.4 and run on a 1.4 runtime engine and a MS Windows 
2000 operating system. The case base was preloaded from the database into Java managed objects before 
execution.  
 
4. Lessons learned and future plans 

 
As shown in Table 2, our algorithm successfully produces a relatively low similarity score for cases that are 
completely different with respect to their pattern of time and dosage but high scores when cases are equal (score 
of 0.699) or similar (score of 0.528) in treatments. This proves to be as intended, although the first score is 
suboptimal since the mean does not show that three of five test cases are rated above our threshold of 0.7. It 
therefore seems that our algorithm may be open for further weight optimization on the tradeoff between 
treatment and time and dosage pattern. 
An application related problem that might arise is how to deal with standard therapies. During the course of 
treatment for a normal hospital stay for a specific diagnosis, many of the treatments are part of a standardized 
practice guideline or order set. Though the standardization in treatment plans will produce high similarity scores 
due to their predefined patterns of application, these are probably not associated with ADEs.  
Another application related problem that might arise is whether our model is capable of representing 
pharmacokinetics appropriately. In our test we just modeled dosing and application intervals but for a better 
pharmacological conclusion it would be important to model the concentration of active compounds in the body. 
An approximation of this could be done by calculating estimated body concentrations from the time and dosage 
pattern combined with some rudimentary pharmacokinetic elimination function. This data could possibly be 
derived from pharmacological databases enhanced by calculation of altered degradation due to impaired kidney 
or liver function and co-medication (drug interactions). 
While these are no problems inherent to the modeling itself and thus not the main concern this time they should 
be considered in future research to make such a system useful in a clinical setting. 
Our aim was to develop a case modeling and an associated similarity measurement algorithm for a CBR system 
that is capable of rating time-dependent data with high sensitivity and specificity. The focus of our CBR test 
cases was on drug therapies in which timing is an essential part of any treatment plan and which determines the 
ultimate (adverse) effect of pharmacotherapy. In this first step we have developed a successful model and 
similarity algorithm for time-value patterns with a relatively high specificity as an essential component of a CBR 
based alerting system for drug related events. 
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Tables 

 

Table 1: Categories of cases and how they should be classified 

 
 Time and dosage pattern 

 
equivalent equivalent but 

shifted in time 
similar different 

equivalent same same similar different 

similar similar similar similar different 

T
reatm

en
ts 

different different different different different 

 
 
Same: The cases should be rated very similar and shifts in the timing of drug therapies should not affect the 
classification. Courses of treatments consisting of equivalent treatments applied in the same temporal 
constellation to each other belong to this class. 
Similar: The rating should indicate a similarity but it should reflect that the cases do have differences. Courses of 
treatments that have some groups of treatments and their respective temporal constellation in common belong to 
this class. 
Different: The rating should indicate that both cases differ in critical aspects. Courses of treatments that differ 
substantially either in their type of treatment or in their respective temporal constellation belong to this class. 
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Table 2: Assigned similarity in the mean by new algorithm 

 
 Time and dosage pattern 

 

 
equivalent equivalent but 

shifted in time 
similar different 

equivalent 
0.923 0.998 0.959 0.699 

similar 0.875 0.910 0.877 0.528 

T
reatm

en
ts 

different 0.475 0.396 0.464 0.195 
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Figure 1 
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Figure 2 
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Figure 3 
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 Figure 4 
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Figure captions 

 

Figure 1:  
Case based reasoning (CBR) cycle [modified after 19]. A new problem arises and is compared to a collection of 
historic problems whose solutions are already known. The most similar historic problem and the respective 
solution are retrieved. By adapting the historic solution to the new problem the historic knowledge is reused to 
suggest a new solution. The suggested solution is revised for its appropriateness and finally retained for usage as 
new historic knowledge to help solving future problems. 
 
Figure 2:  

Course of treatments: One course of treatments in one case of one patient is modeled by vectors of applied doses 
for each respective treatment. The fields of these vectors model a temporal abstraction of preselected granularity 
over the duration of the case. The figures inside the boxes represent the given doses at the respective point of 
time (mo: morning, no: noon, ev: evening, be: bedtime, ni: night). 

 
Figure 3:  
'No time' algorithm, basic algorithm that calculates similarity in treatments in cases without taking time into 
account. Courses of treatments of two different hospitalizations are compared by counting the equivalent 
treatments in each and dividing the resulting number by the maximum number of treatments of both courses.  
 
Figure 4:  
Two time and dosage patterns of two equivalent treatments from two different cases are cross-correlated to 
determine the temporal deviation at which their statistical similarity is highest. 
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Algorithms 

 

 
 

 

Algorithm 1 

Input 

    listA: a list of all courses of treatment occurring in case A 
    listB: a list of all courses of treatment occurring in case B 
Output 

    res: a similarity score 
    // The two following are not an output of the normal algorithm. They are needed for further 
    // use when this algorithm is used as first step of our new approach. 
    slistA: a list of all courses of treatment occurring in both cases with the time patterns of case A 
    slistB: a list of all courses of treatment occurring in both cases with the time patterns of case B 
Begin 

    // The class Treatment carries all information of a course of treatment 
    Treatment treA, treB; 
    // building up both lists 
    for (i = 0; i < listA.size(); i++) { 
         treA = (Treatment) listA.get(i); 
         for (j = 0; j < listB.size(); j++) { 
              treB = (Treatment) listB.get(j); 
              if (treA.name.equals(treB.name)) { 
                   // Adding to the lists 
                   slistA.add(treA); 
                   slistB.add(treB); 
              } 
         } 
    } 
    // determining the longer list of treatments 
    llen = (listA.size() < listB.size() ? listA.size() : listB.size()); 
    // since both ‘tl’ lists have the same length it does not matter which we take for numerator 
    tllen = tlA.size(); 
    // calculating the similarity score 
    res = (tllen / (2 * llen)); 
End 
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Algorithm 2 

Input 

    slistA: a list of all treatments occurring in both cases with the time pattern of case A 
    slistB: a list of all treatments occurring in both cases with the time pattern of case B 
Output 

    best: list of best correlations and their respective relative position in time 
Begin 

    Treatment treA, treB; 
    // checking for the longer length of time pattern 
    treA = (Treatment) slistA.get(0); 
    treB = (Treatment) slistB.get(0); 
    tplen = (treA.timePattern.length < treA.timePattern.length ? treB.timePattern.length :  
                 treA.timePattern.length); 
    // best is a two dimensional array holding the correlation score in the first axis  
    // and the position in the second 
    for (i = 0; i < slistA.size(); i++) { 
        treA = (Treatment) slistA.get(i); 
        treB = (Treatment) slistA.get(i); 
        // Correlating both time pattern over the full length 
        corr  = crossCorrelation(treA.timePattern, treB.timePattern, tplen); 
        // checking if the actual correlation score is the highest by now 
        // and if it is then replacing the old one 
        for (j = 0; j < corr.length; j++) { 
        if (best[i][0] < corr[j]) { 
        best[i][0] = corr[j]; 
        best[i][1] = j; 
    } 
End 
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Algorithm 3 

Input 

    best: list of best correlations and their respective relative position in time 
Output 

    maxhist: central position of the maximal cluster within the histogram 
Begin 

    // building histogram of best correlations 
    for (i = 0; i < best.length; i++) { 
        histo[best[i][1]]++; 
    } 
    // searching for the maximal cluster within the histogram 
    maxhist = 0; 
    currsum = 0; 
    // stepping along the histogram 
    for (i = 0; i < histo.length; i++) { 
        tmpsum = 0; 
        // summing up the area of the cluster 
        for (j = -2; j < 3; j++) { 
            actpos = i + j; 
            // checking if the current focus is within bounds 
            if (actpos < 0) { 
                tmpval = 0; 
            } else if (actpos > (histo.length - 1)) { 
                tmpval = 0; 
            } else { 
                // if it is summing it up 
                // histoweights has the structure of histoweights = {0.4, 0.8, 1.0, 0.8, 0.4} 
                tmpval = histo[actpos] * histoweights[j + 2]; 
            } 
            tmpsum = tmpsum + tmpval; 
        } 
        if (tmpsum > currsum) { 
        maxhist = i; 
        currsum = tmpsum; 
    } 
End 
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Algorithm 4 

Input 

    best: list of best correlations and their respective relative position in time 
    maxhist: central position of the maximal cluster within the histogram 
Output 

    res: second half of the similarity score 
Begin 

    tmpsum = 0; 
    count = 0; 
    for (i = 0; i < best.length; i++) { 
        if ((maxhist - 2 <= best[i][1]) && (best[i][1] <= maxhist + 2)) { 
            tmpsum = tmpsum + best[i][0]; 
            count++; 
        } 
    } 
    res = tmpsum / (2 * count); 
End 


