Leistungsverzeichnis

- Parameter
- Methode
- Probenmaterial
- Testhäufigkeit
- Referenzbereich

Analysezentrum und Kooperatives Speziallabor des Klinikums der Universität Heidelberg

Das Zentrallabor ist seit dem 9. Nov.2005 akkreditiert nach DIN EN ISO 15189 DAC-ML-0424-05-00

Prof. P. Nawroth, M. Zorn, M. Brune, S. Dani, P. Demmer, M. Parcina, H. Zimmer

Anschrift des Analysezentrums:

Analysezentrum der Universitätsklinik Heidelberg Im Neuenheimer Feld 671 69120 Heidelberg

Anschrift des Kooperativen Speziallabors:

Kooperatives Speziallabor der Universitätsklinik Heidelberg Im Neuenheimer Feld 410 69120 Heidelberg

Wichtige Telefonnummern:

Büro

Befundauskunft,

Beklamationen 06221 / 56-8803

Sekretariat 06221 / 56-8801 Fax 06221 / 56-5329

Dienstarzt 06221 / 56-8802

Kooperierende Abteilungen

Endokrinologische Klinik Leiter: Prof. Dr. P. Nawroth

Hautklinik

Leiter: Prof. Dr. A. Enk

Hygieneinstitut Abteilung für Virologie Leiter: Prof. Dr. H.-G. Kräusslich

Institut für Rechts- und Verkehrsmedizin

Leiter: Prof. Dr. K. Yen

Kardiologische Klinik

Leiter: Prof. Dr. H. A. Katus

Klinik für Hämatologie, Onkologie und

Rheumatologie

Leiter: Prof. Dr. A. D. Ho

Neurologische Klinik

Leiter: Prof. Dr. W. Hacke

Pharmakologisches Institut, Steroidlabor

Leiter: Prof. Dr. Kasperk

Inhaltsverzeichnis

Wichtige Hinweise zur Handhabung der	9
Auftragsformulare	10
Patientenangaben	11
Einsenderangaben	11
Befundübermittlung	11
Bestellen von Auftragsformularen	11
Verfügbare Auftragsformulare	12
Präanalytische Hinweise	13
, Standardisierte Blutentnahme	13
Fehlerquellen	15
. Blut	16
Urin	18
Beurteilung des Probenmaterials	19
Probenannahme	20
Messunsicherheit und Signifikanz	21
Parameter und Referenzbereiche	
Alphabetisches Verzeichnis	27
Anhang 1:	
Allergene	196
Anhang 2:	
Endokrinologische Funktonsteste	212
Index	267

Abkürzungen der verwendeten Methoden

AAS Atomabsorptionsspektrometrie AES Atomemissionsspektrometrie

Aggl. Agglutination Aggr. Aggregation

AMIA_{TM} ASCENDTM MultImmunoAssay CEDIA homogener Enzym-Immunoassay

CLIA Chemilumineszens-Assay

ECLIA Elektro- Chemilumineszens-Assav

ΕIΑ Enzymimmunoassay

ELISA Enzyme-Linked Immunosorbend Assay

ELPHO Elektrophorese

EMIT Enzyme-Mediated-Immunologic-

Technique

Enzymatischer Test enzym.

FPIA Fluoreszens-Polarisations-

Immunoassay

HPLC High-Pressure-Liquid-Chromatography

Immun-Fluoreszenz-Technik **IFT** Koagulometrischer Test koag. Nephelometrischer Test neph Photometrischer Test phot. RIA Radio-Immuno-Assay Turbidimetrischer Test turb.

6

Wichtige Hinweise zur Handhabung der Auftragsformulare

Ausfüllen:

Anzufordernde Untersuchungsparameter mit weichem Bleistift markieren. Kugelschreiber, Fasermaler u.ä. werden bei der maschinellen Bearbeitung der Auftragsformulare nicht erkannt. Fehlmarkierungen müssen sorgfältig ausradiert werden, nicht durchstreichen, da diese ansonsten weiter als Auftrag identifiziert werden.

Auftragsformulare nicht heften, knicken oder lochen!

Jedes Probengefäß muss dem Probenmaterial entsprechend mit den auf dem Auftragsformular vorliegenden Barcode-Etiketten versehen sein.

Patientenangaben:

Ausschließlich Barcode-Etiketten mit aktueller Fallnummer verwenden!

Einsenderangaben:

Jeder Einsender erhält vorcodierte Auftragsformulare.

Befundübermittlung:

Die Befunde werden entsprechend der Einsendercodierung versandt.

Bestellen von Auftragsformularen:

Das Bestellen von Auftragsformularen erfolgt mit einem Bestellformular, das aus dem Internet abgerufen und ausgedruckt werden kann. Das ausgefüllte Formular wird zur Bestellung der Auftragsformulare an

06221 / 56-5205 gefaxt.

Bitte beachten:

Der Austausch von Auftragsformularen zwischen den Stationen führt zwangsläufig zu Fehlausgaben beim Befunddruck.

Verfügbare Auftragsformulare

- Routine I
- > Routine II Spezialuntersuchungen
- Notfall
- > Allergie
- > Endokrinologische Funktionsteste
- Funktionstest Glucose

Präanalytische Hinweise

Standardisierte Blutentnahme

Blutentnahme zwischen 7 und 9 Uhr morgens am nüchternen Patienten in gleicher Körperposition (entweder immer liegend oder immer sitzend) nach 5-minutiger Ruhephase des Patienten (Feststellung der Identität des Patienten):

- a) Aufsuchen der Entnahmestelle: Bevorzugung in folgender Reihenfolge: Venen im Ellbogen-, Unterarm-, Handrückenbereich (nur in Ausnahmefällen Vena femoralis). Visuelle und palpatorische Begutachtung.
- b) **Hautdesinfektion**: nach Desinfektion mit Spray oder damit getränktem Tupfer ca. 30 sec warten.
- c) Stauung anlegen: maximale Stauungszeit von 30 sec möglichst nicht überschreiten, auf routinemäßiges Öffnen und Schließen der Faust ("Pumpen") verzichten; auf noch tastbaren Puls achten (Staudruck: 50 – 100 mmHg);
- d) Punktion: Stich mit Kanüle nach Ankündigung in einem Winkel von ca. 30° mit Schliffseite nach oben. Kanüle mit einem ausreichend großen Lumen verwenden. Bei Verwendung

- e) von Butterfly-Sets ist vor Abnahme von Blutproben mit definierten Volumina wie bei Gerinnungsmonovetten darauf zu achten, dass das Schlauchsegment mit Blut gefüllt ist, da das Mischverhältnis von 1 Teil Antikoagulanz + 9 Teile Blut unbedingt einzuhalten ist, um Fehlbestimmungen und daraus resultierende Fehlabnahmen zu vermeiden.
- f) Blutentnahme: Lösen der Stauung nach erfolgreicher Blutaspiration, Blutröhrchen mit Antikoagulanzien nach Blutentnahme mehrmals kippen (nicht schütteln); Nativröhrchen vor Röhrchen mit Additiva insbesondere vor Gerinnungsröhrchen verwenden, um eine Kontamination dieser Röhrchen mit paravasaler Gewebeflüssigkeit zu vermeiden; Entnahme aus bereits länger liegenden intravenösen Kathetern möglichst vermeiden (Verfälschung der Gerinnungswerte, Verdünnungseffekt).
- g) Nach Entnahme: trockenen Tupfer auflegen, Kanüle rasch zurückziehen, Kompression des Tupfers auf der Entnahmestelle möglichst durch den Patienten; Beugen des Armes vermeiden.

Fehlerquellen

<u>Hämolyse:</u> Durch zu lange Stauung, zu schnelle Aspiration, zu kleines Kanülenlumen, fehlende Vermischung mit dem Antikoagulanz, zu starkes Schütteln, zu starkes Abkühlen oder Erwärmen, zu lange Aufbewahrung bis zur Analyse.

Falsch hohe Werte (insbesondere Kaliumerhöhung): durch zu langes "Pumpen", zu lange Stauung (Hämokonzentration mit Erhöhung v. a. von Proteinen, Zellzahlen, Lipiden).

<u>Gerinnung:</u> durch zu langwierige Venenpunktion, mangelnde Vermischung mit Antikoagulanzien.

Probenentnahmesysteme

Blut:

Prinzipiell unterscheidet man hier zwischen Serumund Plasmaröhrchen.

Im Serumröhrchen gerinnt das Blut (ca. 30 bis 45 Min. nach Blutentnahme). Vor der Weiterverarbeitung muss dieser Gerinnungsprozess abgewartet werden. Die Mehrzahl der klinisch-chemischen Parameter kann aus Serum oder Plasma bestimmt werden, die Parameter Kalium und LDH werden aber gegenüber Plasma im Serum immer etwas höher gefunden. Für eine Proteinelektrophorese kann **nur** Serum verwendet werden, da Fibrinogen sich als zusätzliche Fraktion darstellt.

In Plasmaröhrchen wird die Gerinnung durch Antikoagulanzien verhindert. Nicht jedes Antikoagulanz ist für jede beliebige Untersuchung zu verwenden. Folgende Antikoagulanzien kommen zum Einsatz:

a) Lithiumheparinat

Dies ist für fast alle Untersuchungen der Klinischen Chemie zu verwenden.

Besonders für Notfalluntersuchungen ist es geeignet, da das Blut sofort zentrifugiert, das Plasma gewonnen und weiterverarbeitet werden kann.

Gegenüber einer Bestimmung im Serum sind die Kalium- und LDH-Werte im Plasma etwas geringer. Die Proteinelektrophorese erfolgt aus oben genannten Gründen nur aus Serum. Dieses Antikoagulanz ist z. B. in Blutgasröhr chen enthalten.

b) Kalium-EDTA

Dieses Antikoagulanz findet fast ausschliesslich für hämatologische und molekularbiologische Untersuchungen Verwendung.

c) Natrium-Citrat

Für Gerinnungsanalysen ist dies das geeignete Antikoagulanz. Es ist unbedingt zu beachten, dass das Mischungsverhältnis Natriumcitrat/Blut exakt eingehalten wird (1 Teil Citratlösung / 9 Teile Blut). Deshalb müssen diese Blutentnahmeröhrchen immer bis zur Marke gefüllt sein.

d) Natrium-Fluorid

Dies ist ein Glykolysehemmer und daher besonders zur Glukose- und Laktatbestimmung geeignet.

Urin:

Die Ausscheidung einiger Substanzen unterliegt einer zirkadianen Rhythmik. Daher muß Urin während 24 h gesammelt werden. Die Sammelperiode beginnt nach dem 1. Morgenurin und endet mit dem 1. Morgenurin des darauffolgenden Tages. Für einige Untersuchungen ist es notwendig, in das Sammelgefäß 10 ml konzentrierte Salzsäure zu geben, bzw. den Urin lichtgeschützt und kühl aufzubewahren (siehe Urinanforderungsschein). Der Patient muß über diese Maßnahmen unterrichtet und auf die Gefährlichkeit der Salzsäure hingewiesen werden.

Beurteilung des Probenmaterials

Hämolyse:

Sie kann pathologische Ursache in der Erhebung des Patienten haben, ist aber häufiger durch Fehlabnahmen bedingt (dünne Kanülen, langes Stauen der Armvenen, zu schnelles Aspirieren zu lange Zeit bis zur Zentrifugation und Abtrennung des Plasma/Serums vom Zellsediment).

Schon bei leicht hämolytischem Blut sind Kalium und LDH erhöht. Starke Hämolyse kann auch die Bestimmung anderer Parameter beeinträchtigen.

Lipämie:

Photometrische Messungen werden durch Lipämie gestört. Die Lipide werden im klinisch-chemischen Labor durch Ausschütteln mit Trifluorethan, im hämatologischen Labor durch Ersatz des Plasmas mit 0,9 % NaCI-Lösung entfernt.

Probenannahme

Routineproben sollten wie folgt im Labor angekommen sein:

	Werktags	Sa, So, Feiertage
Analysezentrum (Routine I-Schein)	24 Std.	24 Std.
Kooperatives Speziallabor	7.30 – 16.00 Uhr	./.

Außerhalb dieser Zeiten werden Proben im Analysezentrum angenommen und bis zur Messung sachgerecht gelagert.

Messunsicherheit und Signifikanz

Jedes Messergebnis ist einer **Messunsicherheit** unterworfen, die von Fehlern und Unsicherheiten aus den verschiedenen Stufen der Probennahme und der Analyse und der teilweisen Unkenntnis der Faktoren, die das Ergebnis beeinflussen, herrührt. Nach ISO/DIN 3534-1 ist sie definiert als Schätzwert, der den Wertebereich angibt, innerhalb dessen der wahre Wert zu erwarten ist.Die Kenntnis der Messunsicherheit kann bei der Beurteilung der Signifikanz von medizinischen Laborbefunden sehr hilfreich sein. Zwei wesentliche Fragestellungen sind zu nennen, denen der medizinische Befund dienen soll:

• Wie ist die Absolutlage des Parameters relativ zu einem Referenzbereich (Abweichung und Grad der Abweichung von der Norm, Erreichen eines Therapieziels etc.)? Ist der erhaltene Wert signifikant von einem Vorwert verschieden (Verlaufskontrolle)? In die Beurteilung der "Messunsicherheit" müssen alle Quellen einbezogen werden. Die Richtlinien zur Interpretation der Normenserie EN 45000 und ISO GUIDE 25 geben daher auch ausdrücklich an, dass eine Beurteilung der Wiederholbarkeit und Vergleichbarkeit allein nicht ausreichend ist. Alle relevanten Quellen der Unsicherheit

müssen berücksichtigt werden, insbesondere auch die Probennahme, die im medizinischen Laboratorium eine entscheidende Rolle spielt. Die für die Signifikanzbetrachtung entscheidende Gesamtmessunsicherheit im medizinischen Laboratorium hängt zumindest ab von:

1. Einflussgrößen (= in vivo Determinanten):

- biologisch physiologische Einflüsse, u. a. Geschlechtsdifferenzen, Alter, Ernährung, Belastungszustand, Körperlage, Tagesrhythmik
- Einflüsse diagnostischer und therapeutischer Maßnahmen z. B. i.m-Injektion, pharmakologische Veränderung im Stoffwechel, pathologische Einflüsse (Träume, Operationen, Schock),
- Einflüsse, die sich aus der Probennahme ergeben (s. unten).

2. Störfaktoren (= in vitro Determinanten):

 als Konsequenz diagnostischer und therapeutischer Maßnahmen, insbesondere Störung durch Pharmaka Störung durch Probenbestandteile, die noch vor Abnahme in vivo oder durch falsche Lagerung der Probe in vitro auftreten

3. insbesondere der Probennahme als Fehlerquelle

- Einflussgrößen (Art der Proben, Körperlage, Stauungszeit, Tageszeit, Lipämie, Hämolyse usw.)
- Störfaktoren (Gerinnung, Hämolyse, Lagerung, Lichtexposition, Raumluft usw.)

der Präanalytik (Transport, Probenvorbereitung etc.)

der Präzision des analytischen Laborprozesses

(Maß für den statistischen Fehler bei wiederholter Messung = Streuung). Das Maß für die Präzision ist der Variationskoeffizient. Seine Größe kann stark von der Lage des Messwertes abhängig sein (z.B. kann eine Methode bei niedrigen Messsig-

nalen eine größere relative Streuung aufweisen als bei höheren)

6. **der Richtigkeit des analytischen Laborpro- zesses** (Maß für die Messsystem-abhängige Abweichung vom "wahren Wert")

Eine Reihe dieser Punkte, die die "Gesamtmessunsicherheit" bedingen, sind stark abhängig von den individuellen Gegebenheiten beim

Patienten. Eine Abschätzung des Beitrags dieser Unsicherheit kann nur in Kenntnis des betroffenen Individuums und der medizinischen Gegebenheiten vorgenommen werden. Entscheidend ist die Erkenntnis, dass diese Beiträge für sehr viele Analyte wesentlich größer sind als die eigentlichen analytischen Variablen der Messunsicherheit (Richtigkeit und Präzision).

Im Rahmen der Qualitätskontrolle wird die Berechnung der analytischen Präzision und Richtigkeit für alle quantitativen Parameter ständig aktualisiert. Es erfolgt eine regelmäßige Teilnahme an Ringversuchen der Deutschen Gesellschaft für Klinische Chemie und INSTAND e.V.

Wir haben uns bemüht, die für die Beurteilung der Gesamtmessunsicherheit wichtigen Spezifika der einzelnen Analyte, z.B.

- Molekülgröße, die den Einfluss von Stauungszeit und Körperlage bei der Probeentnahme entscheidend mitbestimmt
- Halbwertszeit bei Medikamenten
- Einflussgrößen und Störfaktoren in diesen Laborinformationen aufzulisten.

Die Ärzte des Labors stehen zur Diskussion der Signifikanz eines Befundes jederzeit zur Verfügung.

Sie werden die aktuellen Daten zur analytischen Messunsicherheit sowie Überlegungen zur Präanalytik in die Diskussion des Individualbefundes einbringen. Die fortlaufende Aktualisierung der Aktivitäten des Zentrallabors, wie die Einführung neuer Parameter, Veränderungen der Referenzbereiche u. a. finden Sie unter:

www.klinikum.uni-heidelberg.de/Zentrallabor.1313.0.html

Parameter und Referenzbereiche Alphabetisches Verzeichnis

ACE

Siehe Angiotensin-1-Converting-Enzym

ACTH (Adrenocorticotropes Homon)

Methode CLIA
Material EDTA-Blut
Häufigkeit täglich, Mo.- Fr.
Referenzbereich < 46 pg/ml

ACTH-Kurztest

Siehe unter Funktionsteste im Anhang

Acetylcholin-Rezeptor (Autoantikörper)

Methode IRMA
Material Serum
Häufigkeit bei Bedarf
Referenzbereich < 0,15 nmol/l

Acetylsalicylsäure (ASS)

Methode EMIT

Material Serum/Plasma

Häufigkeit täglich

Therapeutischer Bereich < 180 mg/l

Acetylsalicylsäure (ASS) zur Beurteilung der Thrombozytenaggregationshemmung

Methode Aggr.
Material Citratblut
Häufigkeit bei Bedarf
therapeutischer Bereich Gute Wirkung

ADAMTS 13

 $\begin{array}{lll} \text{Methode} & \text{ELISA} \\ \text{Material} & \text{Citratblut}^* \\ \text{Häufigkeit} & \text{bei Bedarf} \\ \text{Referenzbereich} & 40-130 \% \end{array}$

*Die Probe muss gekühlt innerhalb von 2 Std im

Labor vorliegen. Testdauer ca 6 Std.

ADH (Antidiuretisches Hormon)*

Methode RIA

Material EDTA-Plasma Häufigkeit 2x / WocheReferenzbereich ≤ 8,0 ng/l

Zur Bewertung der Resultate ist die parallele Bestimmung

der Serum-Osmolalität notwendig.

*Fremdleistung: Parameter wird versendet

Adrenalin im Plasma Siehe Katecholamine

Adrenalin im Urin Siehe Katecholamine

AFP (α-Fetoprotein)

Methode CLIA

Material Serum/Plasma Häufigkeit täglich, Mo.-Fr. Referenzbereich - 8 (20) IU/I

AFP (α-Fetoprotein)

Methode **FCLIA**

Material Fruchtwasser

Häufigkeit täglich, Mo.-Fr. Referenzbereich 13 SSW:

15,65 mg/l 17,96 mg/l (Median): 14 SSW:

15 SSW: 17,07 mg/l

> 16 SSW: 14.10 mg/l 17 SSW: 11.65 ma/l

> 18 SSW: 9,62 mg/l 19 SSW: 7,95 mg/l

20 SSW: 6.56 mg/l 21 SSW: 5.42 ma/l

22 SSW: 4.48 ma/l 23 SSW: 3,70 mg/l

24 SSW: 3,10 mg/l vorläufige Werte. erstellt vom Institut für

Humanaenetik

Alanin-Aminotransferase (ALT/GPT)

Methode Enzym.

Plasma/Serum Material

Häufigkeit täglich Referenzbereich Frauen

< 35 U/IMänner < 50 U/I

-60 U/I< 6 Monate

< 12 Monate - 43 U/L

Albumin im Liquor

Methode Neph.
Material Liquor
Häufigkeit täglich

Referenzbereich 110 – 350 mg/dl

Albumin im Serum/Plasma

Methode Biochromatische

Endpunktbestimmung

Material Serum/Plasma Häufigkeit täglich

Referenzbereich 30 – 50 g/l

< 1 Jahr 35 – 49 g/l < 5 Jahre 36 – 50 g/l

< 19 Jahre 37 - 51 g/l

Albumin im Urin

Methode Neph.

Material Urin

Häufigkeit täglich

Referenzbereich < 20 mg/l

Hinweis: 24 Std.-Sammelurin ohne Zusätze, Sammelmenge

unbedingt immer mit angeben.

Aldosteron

Methode RIA

Material EDTA-Plasma Häufigkeit bei Bedarf

Referenzbereich (liegend) 1 - 16 ng/dl

Aldosteron nach Chromatographie

Methode RIA nach recovery-korrigierter

Chromatographie Serum, EDTA-Plasma

Häufigkeit wöchentlich

Referenzbereich

Material

Erwachsen liegend 2 – 10 ng/dl aufrecht 6 – 30 ng/dl

 Kinder 1 Mo – 1 Jahr
 5 – 90 ng/dl

 Kinder 1 – 2 Jahre
 7 – 54 ng/dl

 Kinder 2 – 15 Jahre
 2 – 35 ng/dl

 Neugeborene
 < 184 ng/dl</td>

 Frühgeborene
 < 640 ng/dl</td>

Aldosteron frei im Urin

Methode RIA nach recovery-korrigierter Chroma-

tographie

Material 24 Std.- Sammelurin ohne Zusätze

Häufigkeit wöchentlich

Referenzbereich $0.1 - 0.4 \,\mu\text{g}/24 \,\text{h}$

Aldosteron-18-Glucuronid im Urin

Methode RIA nach recovery-korrigierter Chroma-

tographie

Material 24 Std.- Sammelurin ohne Zusätze

Häufigkeit wöchentlich

Referenzbereich $3.5 - 17.5 \mu g/24 h$

Alkalische Phosphatase

Methode		Enzym.
Material		Serum/Plasma
Häufigkeit		täglich
Referenzbereich	Frauen	55 – 105 U/I
	Männer	40 - 130 U/I
	Kinder	
	< 6 Mo.	- 333 U/I
	< 12 Mo.	104 – 518 U/I
	< 5 Jahre	96 - 311 U/I
	< 14 Jahre	118 – 518 U/I

Alkalische Phosphatase (Placenta spezifisch [hPLAP]) *

Methode EIA

Material Serum

Häufigkeit 1 pro Woche

Referenzbereich < 100 mU/I

*Fremdleistung: Parameter wird versendet

Alkalische Phosphatase (Knochen spezifisch [BAB])

Methode Material	CLIA Serum				
Häufigkeit Referenzbe-	1 pro Woche				
reich					
weiblich	< 2 Jahre	42,0	-	80,0	μg/l
	3 - 8 Jahre	37,0	-	69,0	μg/l
	9 – 12 Jahre	40,0	-	72,0	μg/l
	13 – 17 Jahre	8,0	-	42,5	μg/l
	18 – 24 Jahre	6,5	-	16,3	μg/l
	25 – 44 Jahre	5,8	-	14,8	μg/l
	> 44 Jahre	7,1	-	21,3	μg/l
männlich	< 2 Jahre	31,0	-	73,0	μg/l
	3 - 9 Jahre	30,0	-	64,0	μg/l
	10 – 14 Jahre	36,0	-	78,0	μg/l
	15 – 18 Jahre	10,5	-	48,5	μg/l
	19 – 24 Jahre	9,0	-	25,8	μg/l
	> 25 Jahre	7.5	_	20.6	ua/l

Alkalische Phosphatase Isoenzyme

Methode	Elektrophorese
Material	Serum
Häufigkeit	bei Bedarf

Alkalische Leukozyten-Phosphatase (Index)

Methode Mikrosk.

Material EDTA-Blut
Häufigkeit täglich

Referenzbereich 10 – 100 (Index)

Hinweis: Beurteilt wird die Anfärbbarkeit der Phosphatase in den Leukozyten eines möglichst frischen Blutausstriches

Alkohol (Ethanol)

Methode Enzym.

Material Li-Heparin Blut

Häufigkeit täglich

Befundangabe in Promille (%)

Hinweis: Nicht für forensische Zwecke

Keinen Alkohol zur Desinfektion vor der Blutentnahme

verwenden.

Allergenscreening

Methode Rast Material Serum

Häufigkeit täglich Mo.-Fr.

Hinweis: Einzelallergene siehe Anforderungsschein

Allo-Tetrahydrocortisol

Methode RIA nach Glucoronidase

Material Urin*

Häufigkeit wöchentlich

Referenzbereich**

Erwachsen 0.5 - 4,5 mg/24 Std Kinder 4 - 5 Jahre 0,2 - 1,5 mg/24 Std Kinder 6 - 10 Jahre 0,2 - 2,5 mg/24 Std

alpha1-Antitrypsin

MethodeTurbidimetrieMaterialSerum/PlasmaHäufigkeittäglich Mo.-Fr.Referenzbereich0,9 – 2,0 g/l

alpha1-Antitrypsin im Stuhl*

Methode CLIA

Material 1g Stuhl, tiefgefroren

Häufigkeit bei Bedarf

Referenzbereich < 200 µg/g Stuhl
*Fremdleistung: Parameter wird versendet

^{*}Hinweis: 24 Std. Sammelurin ohne Zusätze, die Sammelmenge unbedingt immer mit angeben.

^{**}Körperoberflächen-bezogene Werte auf Anfrage

alpha1-Antitrypsin Genotypisierung

Methode PCR
Material EDTA-Blut
Häufigkeit bei Bedarf

alpha1-Mikroblobulin im Urin

Methode Nephelometrie
Material Sammelurin
Häufigkeit täglich Mo.-Fr.
Referenzbereich < 10 mg/l

Hinweis: Bei Sammelurin unbedingt die Sammelmenge und den Zeitraum angeben.

alpha-Amylase

Siehe Amylase

alpha-GST

Siehe Glutathion-S-Transferase alpha

alpha1-Glykoprotein

Siehe saures alpha1-Glykoprotein

alpha-2-Anti-Plasmin

Methode Phot.

Material Citratplasma Häufigkeit bei Bedarf Referenzbereich 70 – 120 %

ALT/GPT

Siehe Alanin-Aminotransferase

Aluminium im Serum

Methode AAS

Material Spezialröhrchen

(im Labor anfordern)

Häufigkeit bei Bedarf Referenzbereich $< 10 \mu g/l$

Amikacin

Methode FPIA

Material Serum/Plasma

Häufigkeit täglich

Therapeutischer Bereich: 5 - 10 mg/l

Aminolävulinsäure

Siehe delta-Aminolävulinsäure

Amiodaron/Desethylamiodaron

Methode HPLC

Material Serum/Plasma Häufigkeit bei Bedarf

Therapeutischer Bereich: 1,0-3,5 mg/l (Talspiegel)

Amiodaron (nativ) < 2,5 mg/l Desethylamiodaron < 2.5 mg/l

Hinweis: Abnahme vor nächster Dosis

Amisulprid

Methode HPLC

Material Serum/Plasma Häufigkeit Bei Bedarf Mo.-Fr. Therapeutischer Bereich 100 – 400 μg/l **Hinweis:** Abnahme vor der nächsten Dosis

Amitriptylin (Ami- und Nortryptilin)

Methode HPLC

Material Serum/Plasma Häufigkeit täglich: Mo.-Fr. Therapeutischer Bereich: 80 – 200 ng/ml

Ammoniak im Plasma

Methode Phot.

Material EDTA-Blut

(gekühlt in Eiswasser)

Häufigkeit täglich

Referenzbereich – 50 µmol/l

< 1 Tag 30 - 144 µmol/l < 6 Tage 30 - 134 µmol/l < 1 Jahr - 50 µmol/l

Amphetamine

Siehe Drogenscreening

Amylase im Plasma/Serum

Methode Enzym.

Material Plasma/Serum

Häufigkeit täglich

Referenzbereich – 110 U/I

Amylase im Urin

Methode Enzym. Material Urin

Häufigkeit täglich Mo.-Fr.
Referenzbereich - 500 U/I

Hinweis: Bei Sammelurin unbedingt die Sammelmenge und den Zeitraum angeben.

Amylase-Isoenzyme im Plasma/Serum (Pankreas-Amylase)

Methode Enzym.

Material Plasma/Serum

Häufigkeit täglich Referenzbereich 8 - 53 U/I

ANA

Siehe Autoantikörper gegen Zellkerne

Androstendion

Methode RIA nach recovery-korrigierter

Extraktion

Material Serum oder EDTA-Plasma

Häufigkeit wöchentlich

Referenzbereich

Androstendiolglukoronid

Methode RIA nach recovery-korrigierter

Chromatographie

Material Serum oder EDTA-Plasma

Häufigkeit wöchentlich

Referenzbereich

 Frauen
 90 – 398
 ng/dl

 Männer
 250 – 780
 ng/dl

 Kinder präpubertär
 5 – 42
 ng/dl

Angiotensin Converting Enzyme (ACE)

Methode Phot. Material Serum

Häufigkeit 1 − 2 x pro Woche

Referenzbereich Erwachsene 17.5 – 65.7 U/l

Kinder < 17 Jahre 34,0 – 109,5 U/I

Anti-HAV Anti-HBc Anti-HBe

Anti-HCV

siehe Hepatitis-Serologie

Anti-HIV Siehe HIV-1-/HIV-2-Serologie

Anti-Müller-Hormon

Methode Material Häufigkeit Referenzbereich	E S b				
weiblich	< 10 Jahre > 11 Jahre	0,13 0,59	-	4,5 7,5	ng/ml ng/ml
männlich	3 – 7 Jahre 8 – 10 Jahre 11 – 14 Jahre > 15 Jahre	16,7 13,4 9,4 1,5	-	165,0 135,0 82,0 50,7	ng/ml ng/ml ng/ml ng/ml

α2-Antiplasmin (Aktivität)

Siehe Alpha-2-Antiplasmin (Aktivität)

Anti-Saccharomyces cervisiae Antikörper

Methode IFT Material Serum

Häufigkeit täglich: Mo.-Fr.

Referenzbereich (Titer)

Ig A-Antikörper < 100 Ig G-Antikörper < 1000

Anti-Streptokinase *

Methode Gel-Aggl. Material Serum

Häufigkeit täglich Mo.-Fr.

Referenzbereich (Titer) < 640 ASK-Einheiten

*Fremdleistung: Parameter wird versendet

Anti-Streptolysin

Methode Turb. Material Serum

Häufigkeit täglich Mo.-Fr. Referenzbereich < 200 U/ml

Antithrombin (III)-Aktivität

Methode Koag.

Material Citrat-Plasma Häufigkeit täglich Referenzbereich 80 – 120 % Kinder < 1 Monat 40 – 60 %

APC-Genotypisierung

Siehe Faktor V-Leyden-Genotypisierung

APC-Resistenz

Methode Koag.

Material Citrat-Plasma Häufigkeit täglich: Mo.-Fr. Referenzbereich > 1,8 (Ratio)

Apolipoprotein A 1

Methode Neph.

Material Serum/Plasma Häufigkeit täglich: Mo.-Fr. Referenzbereich 1,02 – 2,2 g/l

Apolipoprotein B

Methode Neph.

Material Serum/Plasma Häufigkeit täglich: Mo.-Fr. Referenzbereich 0.59 - 1.6 g/l

Aspartat-Aminotransferase (AST/GOT)

Methode	Enzym.
Material	Plasma/Serum
Häufigkeit	täglich

Häufigkeit Refe

eferenzbereich			
Frauen		< 35	U/I
Männer		< 50	U/I
Kinder			
< 6	6 Monate	- 74	U/I
< 12	2 Monate	- 52	U/I
Į	5 Jahre	- 43	U/I
14	4 Jahre	- 39	U/I

ASS

Siehe Acetylsalicylsäure

Auto-Ak gegen Acetylcholin-Rezeptor

Methode RIA Material Serum Häufigkeit bei Bedarf Referenzbereich < 0.25 nmol/l

Auto-Ak gegen Becherzellen

Methode IFT Material Serum bei Bedarf Häufigkeit Referenzbereich

< 10 (Titer)

Auto-Ak gegen Belegzellen

Methode **IFT** Serum Material Häufigkeit bei Bedarf Referenzbereich < 1:20

(Titer)

Auto-Ak gegen Cardiolipin

Siehe Cardiolipin-Auto-Antikörper

Auto-Ak gegen Doppelstrang-DNS

Methode ELISA Material Serum

Häufigkeit täglich: Mo.-Fr.

Referenzbereich < 40 U/ml

Auto-AK gegen Doppelstrang-DNS (FARR-Test)

Methode RIA Material Serum

Häufigkeit täglich: Mo.-Fr. Referenzbereich < 7,0 U/ml

Auto-AK gegen Doppelstrang-DNA (Crithidia luciliae)

Methode IFT

Material Serum

Häufigkeit täglich: Mo.-Fr.

Referenzbereich (Titer) neg.

Auto-AK gegen ENA (Extrahierbare nukleäre Antigene)

Methode ELISA
Material Serum
Häufigkeit bei Bedarf

Referenzbereich neg.

JO-1

RNP (U1-RNP)

SCL70

Sm-Antigen

SSA-Antigen (RO)

SSB-Antigen (La)

Methode Euroassay/ELISA

Material Serum Häufigkeit bei Bedarf

Referenzbereich negativ

Hinweis: Die Untersuchung auf ENA wird nur bei Vorlie-

gen eines positiven ANA-IFT durchgeführt.

Auto-AK gegen Endomysium

Methode IFT
Material Serum
Häufigkeit bei Bedarf

Referenzbereich < 10

(Titer)

Auto-Ak gegen Epidermale Basalmembran

Methode IFT
Material Serum
Häufigkeit bei Bedarf

Referenzbereich < 20

(Titer)

Auto-Ak gegen Epidermale Interzellularsubstanz

Methode IFT
Material Serum
Häufigkeit bei Bedarf

Referenzbereich

(Titer) < 20

Auto-Ak gegen exokrines Pankreas

Methode IFT
Material Serum
Häufigkeit bei Bedarf
Referenzbereich

(Titer) < 20

Auto-Ak gegen GAD 65 (Glutaminsäure Dehydrogenase)

Methode ELISA
Material Serum
Häufigkeit bei Bedarf
Referenzbereich < 10 U/ml

Auto-Ak gegen glatte Muskulatur

Methode IFT
Material Serum
Häufigkeit bei Bedarf

Referenzbereich < 20

(Titer)

Auto-Ak gegen Gliadin

Methode IFT
Material Serum
Häufigkeit bei Bedarf
Referenzbereich
(Titer) negativ

Auto-Ak gegen Gliadin (IgA)

Methode ELISA
Material Serum
Häufigkeit bei Bedarf
Referenzbereich < 12 U/I

Auto-Ak gegen Glomeruläre/tubuläre Basalmembran

Methode **IFT** Material Serum bei Bedarf Häufiakeit

Referenzbereich < 10

(Titer)

Auto-Ak gegen Granulozytenzytoplasma (p- und c-ANCA)

IFT Methode

Material Serum

Häufigkeit täglich: Mo.-Fr.

Referenzbereich < 10 (Titer)

Hinweis: siehe auch Auto-AK gegen Proteinase 3 und

Myeloperoxidase (MPO)

Auto-Ak gegen Histone

Methode ELISA
Material Serum
Häufigkeit bei Bedarf
Referenzbereich negativ

Auto-Ak gegen Inselzellen

Methode IFT
Material Serum
Häufigkeit bei Bedarf

Referenzbereich (Titer) < 5

Auto-Ak gegen Intrinsic Faktor

Methode IFT
Material Serum
Häufigkeit bei Bedarf
Referenzbereich
Theory negativ

(Titer)

Auto-Ak gegen Lactoferrin

Methode ELISA
Material Serum
Häufigkeit bei Bedarf
Referenzbereich < 15 U/ml

Auto-Ak gegen Leydig/Sertoli-Zellen

Methode IFT
Material Serum
Häufigkeit bei Bedarf

Referenzbereich (Titer) < 5

Auto-Ak gegen Liver-Kidney-Mikrosome (LKM-Auto-AK)

Methode IFT
Material Serum
Häufigkeit bei Bedarf

Referenzbereich (Titer) < 40

Auto-Ak gegen Mitochondriensubformen (M2, M4, M9)

Methode Immunoblot/IFT

Material Serum Häufigkeit bei Bedarf Referenzbereich neg.

Auto-Ak gegen Myelin

Methode IFT
Material Serum
Häufigkeit bei Bedarf
Referenzbereich (Titer) < 100

Auto-Ak gegen Myeloperoxidase (MPO)

Methode ELISA
Material Serum
Häufigkeit täglich: Mo.-Fr.
Referenzbereich < 9 U/ml

Auto-Ak gegen Nebenniere

Methode IFT
Material Serum
Häufigkeit bei Bedarf
Referenzbereich (Titer) < 1:5

Auto-Ak gegen Nukleosomen

Methode ELIS
Material Serum
Häufigkeit bei Bedarf
Referenzbereich < 20 IU/ml

Auto-Ak gegen neuronale Antigene (ANNA: Hu, Ri, Yo)

Methode IFT/Immunoblot

Material Serum Häufigkeit bei Bedarf Referenzbereich (Titer) < 100

Auto-Ak gegen Proteinase 3

Methode ELISA
Material Serum

Häufigkeit täglich Mo.- Fr. Referenzbereich < 3.5 U/ml

Auto-Ak gegen quergestreifte Muskulatur

Methode IFT
Material Serum
Häufigkeit bei Bedarf
Referenzbereich (Titer) < 20

Auto-Ak gegen Schilddrüsen-Proteine (Thyreoglobulin [Anti-TG], thyreoidale Peroxidase [Anti-TPO/MAK], TSH-Rezeptor-Autoantikörper [TRAK])

Methode ECLIA/CLIA
Material Serum
Häufigkeit bei Bedarf

Anti-TPO/Anti-TG

Referenzbereich < 60 IU/ml

TRAK (TSH-Rezeptor Auto-AK)

Referenzbereich < 1,75 IU/I

Auto-Ak gegen Tyrosinphosphatase IA-2

Methode ELISA
Material Serum
Häufigkeit bei Bedarf
Referenzbereich < 10 IU/ml

Auto-Ak gegen nukleäre Antigene (ANA)

Methode IFT
Material Serum
Häufigkeit täglich Mo. – Fr.

Referenzbereich (Titer) < 80

Auto-Ak gegen zyklisch zitrullinierte Peptide (Anti-CCP) (altes Verfahren s. u.)

MethodeELISAMaterialSerumHäufigkeitbei BedarfReferenzbereich< 25 U/ml</td>

Auto-Ak gegen zyklisch zitrullinierte Peptide (Anti-CCP)

Methode CAP-FEIA
Material Serum
Häufigkeit bei Bedarf
Referenzbereich < 7 U/ml

B

Bence-Jones Protein

Siehe Immunelektrophorese

Benzodiazepine

Siehe Drogenscreening bzw. Einzelsubstanzen

β-2-Mikroglobulin im Serum

Methode Turb. Material Serum

Häufigkeit täglich: Mo.-Fr. Referenzbereich < 2,5 mg/l

β-2-Mikroglobulin im Urin (Dialysat)

Methode Turb. Material Urin

 $\begin{array}{ll} \mbox{H\"{a}ufigkeit} & \mbox{t\"{a}glich: Mo.-Fr.} \\ \mbox{Referenzbereich} & < 0,33 \mbox{ mg/l (Urin)} \end{array}$

T-HCG

Methode Material Häufigkei	t				.IA pPlasm glich	a
Referenzl	breich:	Männer				< 5 IE/I
		Frauen (n	nicht schwa	ang	er)	< 10 IE/I
		Schwang	ere:	Ŭ	,	
	1.	SSW	5	-	50	mIE/I
2	2.	SSW	50	-	500	mIE/I
,	3.	SSW	100	-	5.000	mIE/I
4	4.	SSW	500	-	10.000	mIE/I
ļ	5.	SSW	1.000	-	50.000	mIE/I
	6.	SSW	10.000	-	100.000	mIE/I
-	78.	SSW	15.000	-	200.000	mIE/I
(912.	SSW	10.000	-	100.000	mIE/I

Bilirubin, direkt

Methode phot.

Material Hep.-Plasma Häufigkeit täglich Referenzbereich < 0,3 mg/dl

Bilirubin, gesamt

Methode Phot. Material Hep.-Plasma

Häufigkeit täglich

Referenzbereich

Kinder

1	Tag	0,1	-	5,0	mg/dl
2	Tage	0,1	-	9,0	mg/dl
5	Tage	0,1	-	12,0	mg/dl
10	Tage	0,1	-	10,0	mg/dl
1	Monat	0,1	-	3,0	mg/dl
1	Jahr	0,1	-	1,2	mg/dl

Erwachsene < 1,0 mg/dl

Bilirubin im Punktat (Dialysat)

Methode Phot. Material Punktat Häufigkeit täglich

Blutbild

Material EDTA-Blut Häufigkeit täglich

Referenzbereich **Erythrocyten**

Frauen		4,0	-	5,2	/pl
Männer		4,3	-	6,1	/pl
Kinder					
	< 1 Monat	4,3	-	5,8	/pl
	< 1 Jahr	3,7	-	5,2	/pl
	< 6 Jahre	3,9	-	5,3	/pl
	< 12 Jahre	4,0	-	5,2	/pl

Referenzbereich Retikulozyten

Erwachsene	5	-	15	‰
Kinder				
1 Tag	30	-	70	‰
2-3 Tage	10	-	30	‰
< 1 Woche	0	-	10	‰
< 1 Monat	2	-	20	‰
1-2 Monate	4	-	48	‰
2-3 Monate	3	-	36	‰
< 1 Jahr	2	-	28	‰
> 1 Jahr	5	-	15	‰

(Fortsetzung Blutbild)

Referenzbereich

Fetale Erytrhozyten (Hb F-Zellen)

Nichtschwangere	negativ	
Schwangere / post partum	< 0,1*	‰
* = kein Nachweis von Hb F-Zellen		

Referenzbereich

Hämoglobin

Frauen		12	-	15	g/dl
Männer		13	-	17	g/dl
Kinder					•
	< 3 Tage	14,5	-	22,5	g/dl
	< 7 Tage	13,5	-	21,5	g/dl
	< 14 Tage	14,0	-	20,0	g/dl
	< 1 Monat	15,0	-	20,0	g/dl
	< 6 Monate	9,5	-	13,5	g/dl
	< 1 Jahr	11,0	-	16,0	g/dl
	≤ 6 Jahre	11,0	-	14,5	g/dl
	≤ 12 Jahre	11,5	-	15,0	g/dl
	≤ 18 Jahre	12,0	-	16,0	g/dl

(Fortsetzung Blutbild) Referenzbereich

MCV

Erwachsene Kinder		83	-	97	fl
	< 3 Tage	95	-	140	fl
	< 7 Tage	88	-	126	fl
	< 14 Tage	84	-	120	fl
	< 1 Monat	83	-	97	fl
	< 3 Monate	77	-	115	fl
	< 6 Monate	74	-	108	fl
	< 1 Jahr	74	-	102	fl
	< 2 Jahre	73	-	101	fl
	< 12 Jahre	69	-	95	fl

(Fortsetzung Blutbild)

Referenzbereich

HbE

Erwachsene Kinder		27	-	33	pg
	< 3 Tage	31	-	37	pg
	< 14 Tage	36	-	40	pg
	< 1 Monat	27	-	33	pg
	< 6 Monate	25	-	35	pg
	< 1 Jahr	26	-	33	pg
	< 6 Jahre	23	-	31	pg
	< 18 Jahre	25	-	35	pa

Referenzbereich

MCHC

Erwachene Kinder		30	- ;	36	g/dl
	< 3 Tage < 14 Tage	29 28		37 38	g/dl g/dl
	< 2 Monate < 2 Jahre	29 28		37 36	g/dl g/dl

(Fortsetzung Blutbild)

Referenzbereich

Anteil hypochromer Erythrocyten

MCHC ≤ 2,0 % < 2,0

Referenzbereich RDW / EVB*

12,9 - 18,7 %

* RDW = Red Cell Distribution Width EVB = Erythrozytenverteilungsbreite

Referenzbereich Hämatokrit Frauen 0,36 -0,47 1/1 Männer 0.38 0.52 I/IKinder < 3 Tage 0,45 0,67 1/1 0,42 0,39 < 7 Tage 0,66 I/I< 14 Tage 0.63 I/I< 1 Monat 0.45 -0.64 1/1 < 3 Monate 0,28 0,42 I/I≤ 1 Jahr 0.35 -0,44 I/I≤ 2 Jahre 0,33 0.39 I/I≤ 6 Jahre 0.31 -0.37 1/1

0,33 -

0,40 1/1

≤ 12 Jahre

(Fortsetzung Blutbild) Referenzbereich

Thrombocyten

Erwachene Kinder		150	-	440	/nl
	< 10 Tage	140	-	320	/nl
	< 1Monat	150	-	380	/nl
	< 1 Jahr	200	-	480	/nl
	< 10 Jahre	180	-	530	/nl
Referenzbereid Leukozyten	ch				
Erwachene Kinder		4,0	-	10,0	/nl
	< 1 Tag	9,0	-	38,0	/nl
	< 10 Tage	5.0	-	21,0	/nl
	< 14 Tage	5,0	-	20,0	/nl
	< 1 Jahr	5,0	-	17,5	/nl
	< 16 Jahre	4,5	-	13,0	/nl

(Fortsetzung Blutbild) Referenzbereich Differentialblutbild

absolute Zahlen:

Neutrophile (gesamt)	1,8	-	7,7	/nl
Lymphozyten	1,0	-	4,8	/nl
Monozyten	0,2	-	0,8	/nl
Basophile	0,0	-	0,2	/nl
Eosinophile		-	0,5	/nl

Referenzbereich **Differentialblutbild**

Prozentzahlen:

Neutrophile (gesamt)	50	-	80	%
Stabkernige	3	-	10	%
Segmentkernige	50	-	70	%
Lymphozyten	25	-	40	%
Monozyten	2	-	9	%
Basophile	0	-	1	%
Eosinophile	2	-	4	%

Blutgase

Material	EDTA-Blut (arteriell)					
Häufigkeit	täglich	h				
Referenzbereich						
рН	7,37	-	7,45			
pO_2	71	-	104	mm Hg		
pCO₂	35	-	46	mm Hg		
Standardbicarbonat	21	-	26	mmol/l		
O ₂ -Sättigung	94	-	98	%		
Basenüberschuß	-2	-	+3	mmol/l		

Material Häufigkeit Referenzbereich	EDTA-Blut (gemischt-ver täglich			
pH	7,37	_	7.43	
pO ₂	36	-	44	mm Hg
pCO ₂	37	-	50	mm Hg
Standardbicarbonat	21	-	26	mmol/l
O ₂ -Sättigung	65	-	80	%
Basenüberschuß	-2	-	+3	mmol/l

Blutkörperchensenkungsgeschwindigkeit (BKS)

Material	Citratblut		
Häufigkeit	täglich		
Referenzbereich 1 Std Wert	_		
Frauen	3 -	8	mm
Männer	6 -	12	mm

Blutungszeit (in vitro)

Siehe PFA-100

BNP (Brain Natriuretic Peptide)

Siehe NT-Pro-BNP

Bromazepam im Serum

Methode HPLC

Material Serum/Plasma Häufigkeit bei Bedarf Therapeutischer Bereich 5 - 200 μg/l Hinweis: Abnahme vor der nächsten Dosis

Bromid *

Methode	FII	Oι.			
Material	Serum				
Häufigkeit	bei	i Beda	arf		
Physiologisch (Nachweisgrenze)		<	0,625	mmol/l	
unter Therapie	12,5	-	18,75	mmol/l	
bei schweren Epilepsien	18,75	-	28,125	mmol/l	
Intoxikation		>	31,25	mmol/l	
*Framdlaiatunas Dara			الماماء		

Dhat

^{*}Fremdleistung: Parameter wird versendet

C

C1-Esterase-Inhibitor

Methode Phot.
Material Citratblut*
Häufigkeit bei Bedarf
Referenzbereich 70 - 130 %
*Das Citratblut (2,7 ml) ist von der Abnahme an gekühlt
(0 - 4 °C) zu transportieren und zu lagern

С3с

Methode			metris	sch	
Material		Seru	m		
Häufigkeit		täglio	ch: Mo	oFr.	
Referenzbereich					
Erwachsene		0,9	-	1,8	g/l
Kinder	< 3 Monate	0,6	-	1,5	g/l
	< 1 Jahr	0,6	-	1,8	g/l
	< 10 Jahre	8.0	-	2.0	q/l

C4

Methode	turbimetrisch
Material	Serum
Häufigkeit	täglich: MoFr.
Referenzbereich	0.1 - 0.4 a/l

CA 125

Methode CLIA Material Serum

Häufigkeit täglich: Mo.-Fr. Referenzbereich < 35,0 U/ml

CA 15-3

Methode CLIA Material Serum

Häufigkeit täglich: Mo.-Fr. Referenzbereich < 32,0 U/ml

CA 19-9

Methode CLIA Material Serum

Häufigkeit täglich: Mo.-Fr. Referenzbereich < 37,0 U/ml

CA 72-4

Methode ECLIA Material Serum

Häufigkeit täglich: Mo.-Fr. Referenzbereich < 3,0 U/ml

Calcitonin

Methode CLIA
Material Serum
Häufigkeit 2 x Woche

Referenzbereich

Frauen < 5,0 pg/ml Männer < 8,4 pg/ml

Calcium im Punktat

Methode ISE/ Flammenphotometer

Material Punktat Häufigkeit täglich

Calcium im Dialysat

Methode ISE/ Flammenphotometer

Material Dialysat Häufigkeit täglich

Calcium im Serum

Methode Material Häufigkeit		ISE/ Flammenphotometer HepPlasma täglich				
Referenzbereich Erwachsene Kinder		2,1	-	2,65	mmol/l	
< 1 Taç < 1 Mo < 1 Jah	nat	1,85 1,8 2,0	-	2,6 2,8 2,72	mmol/l mmol/l mmol/l	

Calcium im Urin

Methode Material Häufigkeit Referenzbere	aich		ISE/Flamme Urin* täglich	enpho	tometer	
Tielerenzbere	51011		mmol/d/kg		mmol/d	mg/mg Krea
Erwachse	-	M W	0,02 - 0,0		3.0 - 8.0 2.5 - 7.0	< 0,24
Kinder	< 1 Ta	0	0,006 - 0.0 0,02 - 0,2	2	≤ 1 Jahr 2 Jahre 3 Jahre 4-5 Jahre 6-7 Jahre	< 0,80 < 0,56 < 0,50 < 0,40

^{*24} Std.-Sammelurin ohne Zusätze oder Spontanurin

Carbamazepin im Serum

Methode HPLC

Material Serum/Plasma Häufigkeit bei Bedarf Therapeutischer Bereich 4 – 10 mg/l **Hinweis:** Abnahme vor der nächsten Dosis

Carbamazepin-Epoxid im Serum

Methode HPLC

Material Serum/Plasma Häufigkeit bei Bedarf **Hinweis:** Abnahme vor der nächsten Dosis

Carbohydrate Deficient Transferrin

Siehe CDT

Carcino-Embryonales Antigen

Siehe CEA

Cardiolipin-Autoantikörper: Cardiolipin-IgG-Antikörper

Methode ELISA Material Serum

Häufigkeit täglich: Mo.- Fr.

Referenzbereich < 10 IU/ml

Cardiolipin-IgM-Antikörper

Methode ELISA Material Serum

Häufigkeit täglich: Mo.-Fr. Referenzbereich < 5 IU/ml

CD 25 (sCD 25)

Siehe IL2R (II-2 Rezeptor)

CDT (Carbohydrate Deficient Transferrin)

Methode HPLC
Material Serum
Häufigkeit 2–3/Woche
Referenzbereich < 1 % des Gesamttransferrins

CEA

Methode CLIA Material Serum

Häufigkeit täglich: Mo.-Fr. Referenzbereich $< 2,5 (5,0) \mu g/l$

CHE

Siehe Cholinesterase

Chlordiazepoxid

Methode HPLC

Material Serum/Plasma Häufigkeit bei Bedarf

Referenzbereich 300 - 4000 ng/ml

Hinweis: Abnahme vor der nächsten Dosis

Chlorid im Dialysat

Methode ISE
Material Dialysat
Häufigkeit täglich

Chlorid im Liquor

Methode ISE
Material Liquor
Häufigkeit täglich

Chlorid im Plasma

Methode ISE

Material Hep.-Plasma Häufigkeit täglich

Referenzbereich 97 – 110 mmol/l

Chlorid im Urin

Methode ISE
Material Urin*
Häufigkeit täglich

Referenzbereich

*24 Std.-Sammelurin ohne Zusätze

Cholesterin im Dialysat

Methode Phot.
Material Dialysat
Häufigkeit täglich

Cholesterin, Gesamt

Methode Phot.

Material Hep.-Plasma Häufigkeit täglich

Referenzbereich

Erwachsene altersabhängig

Kinder

< 1 Monat 40 – 140 mg/dl

< 1 Jahr < 170 mg/dl

Cholesterin im Punktat

Methode Phot. Material Punktat Häufigkeit täglich

Cholesterin, HDL-

Methode Phot.

Material Hep.-Plasma Häufigkeit täglich

Referenzbereich Frauen ≥ 50 mg/dl

Männer ≥ 40 mg/dl

Cholesterin, LDL-

Methode Phot.

Material Hep.-Plasma Häufigkeit täglich Referenzbereich < 160 mg/dl*

* Hinweis: Der LDL-Wert wird bei Triglycerid-Werten < 400 mg/dl nach der Friedewald-Formel und bei Werten > 400 mg/dl nach Ultrazentrifugation der Probe aus der Differenz von HDL-C und VLDL-C berechnet. Diese Methoden sind nicht direkt vergleichbar. Wir bitten daher bei Triglyceridwerten > 400 mg/dl um Zusendung einer Serumprobe zur Bestimmung der Lipoproteinfraktionen mittles Ultrazentrifugation (Routine 2-Schein).

Cholesterin, VLDL-

Methode Phot. (nach UZ)
Material Hep.-Plasma (Serum)

Häufigkeit bei Bedarf

Cholinesterase im Plasma

Methode Material Häufigkeit		phot HepPla täglich	ısma		
Referenzbereich Frauen Männer Kinder		4,26 5,32	-	11,25 12,92	kU/l kU/l
	< 1 Monat < 6 Monate < 14 Jahre	2,20 2,20 5.32	-	5,75 7,10 10,60	kU/l kU/l kU/l

Chromogranin A (neuroendokrine Tumoren)

Methode ELISA
Material EDTA-Plasm
Häufigkeit bei Bedarf
Referenzbereich < 25 U/I

Chymotrypsin im Stuhl *

Methode Phot.
Material Stuhl
Häufigkeit bei Bedarf

Referenzbereich > 13,2 (6,6) U/g Stuhl

*Fremdleistung: Parameter wird versendet

Hinweis: Die Zahl in Klammern ist die Untergrenze einer Grauzone. Werte innerhalb dieses Bereiches können nicht eindeutig als pathologisch bewertet werden.

Ciclosporin A (monoclonal)

Methode EMIT
Material EDTA- Blut
Häufigkeit täglich

Therapeutischer Bereich nach Transplantation (μ g/I) (Talspiegel): 150 – 300 μ g/I

Citalopram *

Methode LC-MS
Material Serum
Häufigkeit bei Bedarf
Therapeutischer Bereich 20 – 250 ng/ml
Hinweis: Abnahme 10 – 15 h nach letzter Dosis
*Fremdleistung: Parameter wird versendet

CK (Creatin-Kinase)

Methode		Phot.	
Material	aterial HepPla		
Häufigkeit		täglich	
Referenzbereich		_	
Frauen		170	U/I
Männer		190	U/I
Kinder			
	< 3 Tage	777	U/I
	< 1 Jahr	286	U/I

CK-MB Isoenzym

Methode Phot.

Material Hep.-Plasma

Häufigkeit täglich

Referenzbereich < 6,0 % der Gesamt-CK

(entspricht ≤ 10 U/I)

CK Isoenzym-Elektrophorese *

(umfasst CK-MM, CK-MB, CK-BB, CK-MiMi, Makro-CK)

Methode Elektrophorese

Material Serum
Häufigkeit bei Bedarf
Referenzbereich siehe Befund
*Fremdleistung: Parameter wird versendet

Clobazam

Methode HPLC
Material Serum
Häufigkeit bei Bedarf
Therapeutischer Bereich 200 – 500 mg/l
Hinweis: Abnahme vor der nächsten Dosis

Clomipramin

Methode HPLC
Material Serum
Häufigkeit bei Bedarf
Therapeutischer Bereich 175 – 450 mg/l
Hinweis: Abnahme 10 – 15 h nach der letzten Dosis

Clonidintest

Siehe unter Funktionsteste im Anhang

Clonazepam

Methode HPLC
Material Serum
Häufigkeit bei Bedarf
Therapeutischer Bereich 15 – 60 mg/l
Hinweis: Abnahme vor der nächsten Dosis

Clopidogrel

zur Beurteilung der Thrombozytenaggregationshemmung

Methode Aggr.
Material Citratblut
Häufigkeit bei Bedarf
Therapeutischer Bereich Gute Wirkung

Clozapin

Methode HPLC
Material Serum
Häufigkeit bei Bedarf
Therapeutischer Bereich 350 – 600 mg/l

Hinweis: Abnahme vor der nächsten Dosis

Coeruloplasmin im Serum

Methode Turb. Material Serum

Häufigkeit täglich Mo.-Fr. Referenzbereich 0,2 – 0,6 g/l

Coffein

Methode EMIT Material Serum Häufigkeit täglich

CO-Hämoglobin

Methode Phot.

Material Hep.-Blut oder EDTA-Blut

Häufigkeit täglich

Referenzbereich

Nichtraucher 0.4 - 1.6 %Raucher 3.0 - 6.0 %

Corticosteron im Serum/EDTA-Plasma

Methode RIA nach recovery-

korrigierter Extraktion

Material Serum oder EDTA-Plasma Häufigkeit Wöchentlich

Referenzbereich Wochentlich Wochentlich Wochentlich 0,1 – 2,0 µg/dl

Corticosteron frei im Urin

Methode RIA nach recovery-

korrigierter Extraktion und

Chromatographie

Material Urin*

Häufigkeit Wöchentlich Referenzbereich 0,1 – 2,5 μg/24 h

*24 Sdt-Sammelurin ohne Zusätze

Cortisol im Serum

Methode CLIA Material Serum

Häufigkeit täglich Mo.-Fr. Referenzbereich 50 – 250 ng/ml

Cortisol im Urin

Methode RIA
Material Urin*
Häufigkeit bei Bedarf

Referenzbereich

Erwachsene: 10 - 60 μ g/d Kinder 0 - 5 Jahre 3 - 25 μ g/d 6 - 10 Jahre 3 - 30 μ g/d 11 - 14 Jahre 5 - 40 μ g/d

Cortisol frei im Urin nach Chromatographie

Methode RIA nach recovery-korrigierter

Chromatographie

Material Urin*

Häufigkeit wöchentlich

Referenzbereich

Erwachsene: 10 - 60 μ g/24 h Kinder**: präpubertär 3 - 30 μ g/24 h 11 – 14 Jahre 5 - 40 μ g/24 h

*24 Sdt-Sammelurin ohne Zusätze

^{*24} Sdt-Sammelurin ohne Zusätze

^{**} Körperoberfläche bezogene Werte auf Anfrage

Cortison im Serum/EDTA-Plasma

Methode RIA nach recovery-korrigierter Extraktion und Chromatographie

Material Serum oder FDTA-Plasma

Material Serum oder EDTA-Pla Häufigkeit wöchentlich

Referenzbereich 1,5 – 3,0 μg/dl

Cortison frei im Urin nach Chromatographie

Methode RIA nach recovery-korrigierter

Extraktion und Chromatographie

Material Urin*

Häufigkeit wöchentlich

Referenzbereich

Cotinin *

Methode LIA
Material Serum
Häufigkeit bei Bedarf

Referenzbereich (Nichtraucher) < 10 μg/l

*Fremdleistung: Parameter wird versendet

^{*24} Sdt-Sammelurin ohne Zusätze

^{**} Körperoberfläche bezogene Werte auf Anfrage

C-Peptid im Serum

Methode LIA
Material Serum
Häufigkeit bei Bedarf

Referenzbereich 0,7 - 2,0 (4,0) μ g/l

C-reaktives Protein im Plasma

Methode Turb.

Material Hep.-Plasma

Häufigkeit täglich

Referenzbereich < 5,0 mg/l

C-reaktives Protein im Punktat

Methode Turb.
Material Punktat
Häufigkeit täglich

C-reaktives Protein (high sensitive)

Methode Neph.

Material Hep.-Plasma Häufigkeit täglich Referenzbereich < 5,0 mg/l

zur Einschätzung des Risikos für arterio- sklerotische

Gefäßerkrankungen

niedriges Risiko < 1 mg/l mittleres Risiko 1 – 3 mg/l hohes Risiko > 3 mg/l

Creatinkinase

siehe CK

Crosslinks

siehe DPD-Crosslinks

Cyfra 21-1

Methode ECLIA

(Elektrochemilumineszensimmunoassay)

Material Serum

Häufigkeit täglich Mo. – Fr.

Referenzbereich < 3,6 μg/l

Cystatin C

Methode Material Häufigkeit	İ				CLIA HepF täglich	
Referenzb	erei	ch				
0	-	30 Tage	1,11	-	2,15	mg/l
31	-	365 Tage	0,51	-	1,39	mg/l
1	-	11 Jahre	0,37	-	1,2	mg/l
12	-	18 Jahre	0,7	-	1,4	mg/l
19	-	60 Jahre	0,5	-	0,96	mg/l
	>	60 Jahre	0.7	-	1.2	ma/l

Cytomegalie-IgM-Ak

Methode	EIA
Material	HepPlasma
Häufigkeit	täglich MoFr.
Referenzbereich	negativ

D

Danaparoid (Orgaran)

siehe Gerinnungsfaktor Xa

DDAVP (Desmopressin)

Beurteilung der in vitro Blutungszeit (siehe PFA 100) nach

Gabe von DDAVP

Methode Durchfluss-Aggr.

Material Citratblut
Häufigkeit bei Bedarf
Therapeutischer Bereich Gute Wirkung

D-Dimer

Methode Phot.

Material Citratplasma

Häufigkeit täglich

Referenzbereich < 0,15 mg/l bis 16. 11. 2007

< 0,50 mg/l ab 16. 11. 2007

Dehydroepiandrosteron

Siehe DHEA

Dehydroepiandrosteronsulfat

Siehe DHFAS

Delta-Aminolävulinsäure (δ-ALS)

Methode Phot.

Material Urin

Häufigkeit bei Bedarf

Referenzbereich < 4,5 mg/l

Desethylamiodaron

Methode HPLC
Material Serum
Häufigkeit bei Bedarf
Therapeutischer Bereich < 2,5 mg/l
Hinweis: Abnahme vor der nächsten Dosis

Desipramin.

Methode HPLC
Material Serum
Häufigkeit bei Bedarf
Therapeutischer Bereich 30 - 300 μg/l
Hinweis: Abnahme 10 - 15 h nach der letzten Dosis

Desmethyldiazepam (Nordiazepam)

Methode HPLC
Material Serum
Häufigkeit bei Bedarf
Therapeutischer Bereich 20 - 800 ng/ml

Hinweis: Abnahme vor der nächsten Dosis

Desmopressin

Siehe DDAVP

11-Desoxycorticosteron

Methode RIA nach recovery korrigierter Chro-

matographie

Material Serum oder EDTA-Plasma

Häufigkeit wöchentlich

Referenzbereich

Erwachsene 2 - 15 ng/dl Kinder 1 - 12 Mo 7 - 49 ng/dl

Kinder 1 - 12 Mo 7 - 49 ng/dl 2 - 10 Jahre 2 - 34 ng/dl

Früh – und Neugeborene < 105 ng/dl

11-Desoxycorticosteron, frei im Urin

Methode RIA nach recovery korrigierter Chro-

matographie

Material Urin*

Häufigkeit wöchentlich Referenzbereich 0,1 – 0,4 μg/24 Std

* 24 Std.-Sammelurin ohne Zusätze

92 Leistungsverzeichnis_ZL 14.10.2011.doc

11-Desoxycortisol (Substanz S)

Methode RIA nach recovery-korrigierter Ex-

traktion

Material Serum oder EDTA-Plasma

Häufigkeit Wöchentlich Referenzbereich 0.5 - 3 ng/ml

21-Desoxycortisol

Methode RIA nach recovery-korrigierter Ex-

traktion

Material Serum oder EDTA-Plasma

Häufigkeit Wöchentlich

Referenzbereich

Erwachsene $0,05 - 0,3 \quad \mu g/dl$

nach Metopiron 5 - 15 μg/dl

Kinder präpubertär 0,02 - 0,25 μg/dl

21-Desoxycortisol, frei im Urin

Methode RIA nach recovery-korrigierter Chro-

matographie

Material Urin*

Häufigkeit wöchentlich

Referenzbereich 7 – 100 ng/24 Std

* 24 Std.-Sammelurin ohne Zusätze

Dexamethason-Test

Siehe unter Funktionsteste im Anhang

DHEA (Dehydroepiandrosteron)

Extraction

Material Serum oder EDTA-Plasma

Häufigkeit wöchentlich

Referenzbereich

Erwachsene 2,0 - 7,5 ng/ml Kinder 1 - 6 Mo 0,26 - 3,85 ng/ml

6 - 12 Mo 0,2 - 1,0 ng/ml 1 - 5 Jahre 0,2 - 1,3 ng/ml 6 - 7 Jahre 0,2 - 2,75 ng/ml

8 - 10 Jahre 0,2 - 2,75 rig/mi

DHEAS (Dehydroepiandrosteronsulfat)

Methode CLIA Material Serum

Häufigkeit täglich: Mo.-Fr.

Referenzbereich

Diazepam

Methode HPLC
Material Serum
Häufigkeit bei Bedarf
Therapeutischer Bereich 200 – 2000 μg/l
Hinweis: Abnahme vor der nächsten Dosis

Differentialblutbild

Siehe Blutbild

Digitoxin

Methode CLIA

Material Hep.Plasma

Häufigkeit täglich

Referenzbereich $10 - 25 \mu g/l$

Digoxin

CLIA Methode

Hep.Plasma Material Häufigkeit täglich

Referenzbereich

Frwachsene: 0,8 - 2,0 μg/l

Kinder: < 1 Jahr 1,5 2.0 μq/l

Dihydrotestosteron (DHT) nach Chromographie

FLISA Methode Material Serum Häufigkeit bei Bedarf

Referenzbereich

Frauen Praemeno. 24 -368 pg/ml Postmeno. 10 - 181 pg/ml Männer 250 -990 pg/ml

DNA/RNA-Tests

Siehe PCR-Diagnostik im Anhang

DNA-Antikörper

Siehe Autoantikörper gegen Doppelstrang-DNS

Dopamin im Plasma

Siehe Katecholamine im Plasma Spezial-Entnahmeröhrchen anfordern

Doxepin

 $\begin{array}{lll} \mbox{Methode} & \mbox{HPLC} \\ \mbox{Material} & \mbox{Serum} \\ \mbox{Häufigkeit} & \mbox{bei Bedarf} \\ \mbox{Therapeutischer Bereich} & 50 - 250 \ \mu g/l \\ \mbox{Hinweis: Abnahme } 10 - 15 \ \mbox{h nach letzter Dosis} \end{array}$

DPD-Crosslinks (Desoxypyridinolin-Crosslinks)

Methode Material Häufigkeit Referenzbereich		CLIA Urin* bei Be	eda	rf	
weiblich	bis 9 Jahre	8,9	-	32,1	nmol/mmol Krea
	10 – 11 Jahre	4,6	-	26,6	nmol/mmol Krea
	12 – 13 Jahre	2,2	-	26,2	nmol/mmol Krea
	14 – 15 Jahre	2,2	-	13,4	nmol/mmol Krea
	16 – 19 Jahre	0,6	-	14,6	nmol/mmol Krea
	> 20 Jahre	3,0	-	7,4	nmol/mmol Krea
männlich	bis 9 Jahre	8,9	-	32,1	nmol/mmol Krea
	10 – 11 Jahre	4,3	-	24,7	nmol/mmol Krea
	12 – 13 Jahre	3,9	-	30,3	nmol/mmol Krea

DPD-Crosslinks (Fortsetzung)

14 – 15 Jahre		-	26,7	nmol/mmol
				Krea
16 – 19 Jahre		-	18,1	nmol/mmol
				Krea
> 20 Jahre	2,3	-	5,4	nmol/mmol
				Krea

^{*}Urin vor direktem Sonnenlicht schützen, dunkel aufbewahren

Drogenscreening

Methode	$AMIA^TM$
Material	Urin
Häufigkeit	täglich
Referenzbereich	negativ

Die Überschreitung der Schwellenkonzentrationen folgender

Substanzen führt zu einem positiven Befund:

Methadon (d. l) 300 ng/ml 300 ng/ml Benzodiazepine Kokain 300 na/ml 1000 ng/ml Amphetamin/Metamphetamin Opiate 300 ng/ml Barbiturate 300 na/ml 50 ng/ml Tetrahydrocannabinol Trizyklische Antidepressiva 1000 ng/ml

Die mit diesem Test erhobenen Befunde gelten als vorläufig und bedürfen der Bestätigung durch ein alternatives chemisches Verfahren mit gleichwertiger analytischer Empfindlichkeit.

Drogen (Einzeltestung)

Methode CEDIA Material Urin Häufigkeit bei Bedarf

Referenzbereich

Amph/Ecstasy negativ Barbiturate negativ Benzodiazepine negativ Buprenorphin negativ Kokain negativ LSD negativ Methadon negativ Opiate negativ Tetrahydrocannabinol negativ

Ε

Ecarin Zeit

siehe Hirudin und Analoga

Eisen im Lebergewebe

Methode AAS

Material Lebergewebe Häufigkeit bei Bedarf Referenzbereich < 2.0 mg/g TG*

*Trockengewicht des Lebergewebes nach Veraschung der

Probe

Eisen im Plasma

Methode Phot.

Material Hep.-Plasma Häufigkeit täglich

Referenzbereich

Frauen 12 - 27 µmol/l Männer 14 - 32 µmol/l Kinder < 1 Jahr 7 - 29 µmol/l

Eisen im Urin

Methode AAS Material Urin Häufigkeit täglich

Referenzbereich

 $\begin{array}{lll} \mbox{Spontanurin} & < 1,3 & \mu \mbox{mol/l} \\ \mbox{Sammelurin} & < 1,8 & \mu \mbox{mol/24h} \end{array}$

Eisenbindungskapazität (totale; TIBC)

Methode Phot.

Material Hep.-Plasma

Häufigkeit täglich

Eiweiß im Dialysat

MethodePhot.MaterialDialysatHäufigkeittäglichReferenzbereich1,0 – 3,0 g/l

Eiweiß im Liquor

Methode Phot.
Material Dialysat
Häufigkeit täglich
Referenzbereich < 0,4 g/l

Eiweiß im Punktat

Methode Phot. Material Punktat Häufigkeit täglich

Referenzbereich Siehe Befundbericht

Eiweiß im Plasma

Methode		Phot			
Material	HepPlasma				
Häufigkeit		täglio	ch		
Referenzbereich		•			
Erwachsene		60	-	80	g/l
Kinder	< 1 Jahr	46	-	68	g/l
	< 5 Jahre	55	_	77	a/l

Eiweiß im Urin

Methode	Phot.
Material	Urin*
Häufigkeit	täglich
Referenzbereich	< 0,25 g/l

^{* 24} Std. Sammelurin ohne Zusätze

Eiweißelektrophorese (Serum)

Material		Serui	m		
Häufigkeit		täglic	h: M	oFr.	
Referenzber	eich	_			
	AlbuMin.	60	-	71	%
	α 1-Globuline	1,4	-	2,9	%
	α 2-Globuline	7	-	11	%
	β-Globuline	8	-	13	%
	γ-Globuline	9	_	16	%

Eiweißelektrophorese (Urin*)

Material Urin*

Häufigkeit täglich: Mo.-Fr.

* 24 Std. Sammelurin ohne Zusätze

Elastase (Pankreas-Elastase 1) *

Methode ELISA

Material 1g Stuhl, tiefgefroren

Häufigkeit bei Bedarf

Referenzbereich $> 200 \mu g/g \text{ Stuhl}$

*Fremdleistung: Parameter wird versendet

Elektrophorese

Siehe Eiweißelektrophorese

Hämoglobinelektrophorese

ENA

Siehe Auto-Ak gegen ENA

Epithelien im Urin

Methode Digitale Photographie
Material Spontanurin

Häufigkeit täglich

Referenzbereich < 5 Epith/µl

Erythropoietin

Methode LIA
Material Serum
Häufigkeit bei Bedarf
Referenzbereich 2,0 – 21,5 mU/ml

Erythrozyten Siehe Blutbild

Erythrozyten im Urin

Methode Digitale Photographie
Material Spontanurin
Häufigkeit täglich

Referenzbereich < 8 Ery/µl Kinder < 17 Jahre < 10 Ery/µl

Ecitalopram *

Methode LC-MS
Material Serum
Häufigkeit bei Bedarf
Therapeutischer Bereich 15 – 80 ng/ml
Hinweis: Abnahme 10 – 15 h nach letzter Dosis
*Fremdleistung: Parameter wird versendet

Ethanol im Blut siehe Alkohol

Ethosuximid

Methode EMIT
Material Serum
Häufigkeit bei Bedarf
Therapeutischer Bereich 40 – 100 mg/l
Hinweis: Abnahme vor der nächsten Dosis

Ethylglucuronid

Methode photometrisch

Material Urin

Häufigkeit bei Bedarf (Mo – Fr)

Referenzbereich < 100 ng/ml

Everolimus

Methode MEIA Material EDTA-Blut Häufigkeit täglich

Referenzbereich $5,0-8,0 \mu g/l$

F

Faktor II-Genotyp (Prothrombin 20210-Mutation)

Methode PCR
Material EDTA-Blut
Häufigkeit bei Bedarf

Faktor V-Genotyp (Faktor V-Leiden, Genotyp der APC-Resistenz)

Methode PCR
Material EDTA-Blut
Häufigkeit bei Bedarf

Ferritin

remun					
Methode Material Häufigkeit Referenzbere	iah	CLIA HepP täglich	lasr	ma	
	ICH	00		400	/1
Frauen		20	-	120	μg/l
Männer		30	-	300	μg/l
Kinder					. •
	< 15 Tage	90	-	628	μg/l
	< 1 Monat	140	-	400	μg/l
	< 2 Monate	85	-	430	μg/l
	< 4 Monate	35	-	230	μg/l
	< 1 Jahr	7	-	140	μg/l
	< 15 Jahre	7	-	140	ua/l

Fette im Stuhl (Gesamtlipide) *

Methode Titr.

Material Stuhl*

Häufigkeit bei Bedarf

Referenzbereich < 2,0 %

*2 Stuhlröhrchen mit je 1 g Stuhl

Fibrinmonomere

Methode Aggl.

Material Citratplasma Häufigkeit bei Bedarf Referenzbereich negativ

Fibrinogen

Methode	Koagl.
Material	Citratplasma

Häufigkeit täglich

Referenzbereich

Erwachsene 1,7 - 4,5 g/l Kinder

< 1 Tag 1,9 - 3,0 g/l < 1 Jahr 1,7 - 4,5 g/l

^{*}Fremdleistung: Parameter wird versendet

Fibrinongen-Spaltprodukte

Methode Aggl.

Material Spez. Vakutainer-Röhrchen

bei Bedarf Häufigkeit

Referenzbereich $< 20 \,\mu g/ml$ < 20μg/l

FK 506 (Tacrolimus, Prograf[®])

Methode MEIA **EDTA-Blut** Material Häufigkeit täalich Referenzbereich

 $3.0 - 20.0 \,\mu g/l$

Flunitrazepam

HPLC Methode Material Serum bei Bedarf Häufigkeit Therapeutischer Bereich $5 - 40 \mu g/l$ Hinweis: Abnahme vor der nächsten Dosis

Flurazepam

MethodeHPLCMaterialSerumHäufigkeitbei BedarfTherapeutischer Bereich20 – 100 μg/l

Hinweis: Abnahme vor der nächsten Dosis

Folsäure (Folat)

Methode CLIA Material Serum

Häufigkeit täglich Mo.-Fr. Referenzbereich 4,5 – 21 nmol/l

Fondaparinux (Arixtra)

Siehe Gerinnungsfaktor Xa

Freier Androgen-Index (FAI)

Referenzbereich 60 - 70 % Berechnet aus Gesamt-Testosteron und SHBG

Freie Fettsäuren (langkettige C14 - C20) *

*Fremdleistung: Parameter wird versendet

110 Leistungsverzeichnis ZL 14.10.2011.doc

Freie Fettsäuren (sehr langkettige C22 - C26) *

*Fremdleistung: Parameter wird versendet

Freies Hämoglobin im Plasma/Serum

Methode Phot.

Material Hep.-Plasma

Häufigkeit täglich Referenzbereich < 20 mg/dl

Freies T3

siehe FT3

Freies T4

Siehe FT4

Freies Testosteron

Siehe Freier Androgen-Index (FAI)

Statt einer Bestimmung des freien Testosteron wird aus Gesamt-Testosteron und SHBG (Sexual Hormon Binding Globulin) der FAI berechnet.

FSH (Follikel-stimmulierendes Hormon)

Methode		CLIA			
Material		HepF	Plasma	a	
Häufigkeit		täglich	1		
Referenzber	eich	_			
Männer		0,9	-	15,0	U/I
Frauen					
	Prämenopaus.	1,0	-	12,0	U/I
	Postmenopaus.		>	40.0	U/I

FT3 (freies Trijodthyronin)

r 13 (Trefes Trijoc	itriyronin)					
Methode Material Häufigkeit		CLIA HepPla täglich	sma			
Referenzbereich Erwachsene Kinder			2,0	-	4,2	ng/l
	< 3 Tage		3,4	-	9,3	ng/l
	< 1 Monat		2,8	-	6,9	ng/l
	< 1 Jahr		3,3	-	6,5	ng/l
	< 8 Jahre		3,4	-	6,6	ng/l
	< 14 Jahre		4.0	-	6.2	na/l

FT4 (freies Thyroxin)

Methode Material Häufigkeit		CLIA HepPlasma täglich			
Referenzbereich Erwachsene Kinder		8	-	18	ng/l
	< 1 Monat < 1 Jahr	15 11	-	30 18	ng/l ng/l

G

G-6-PDH in Erythrozyten

siehe Glucose-6 Phosphat-Dehydrogenase

GAD-AK (Glutaminsäure-Decarboxylase-Antikörper)

Siehe Autoantiköper gegen GAD I und GAD II

Galactose-Eliminations-Test

Methode Enzym.

Material Plasma*

Häufigkeit bei Bedarf

Referenzbereich

GEK 370 - 640 mg/min GEK/kg KG 6,0 - 9,1 mg/min/kg

*Natrium-Fluorid (NaF)-Plasma

γ-GT (Gamma-GT)

Methode Phot.
Material Hep.-Plasma
Häufigkeit täglich

Referenzbereich

 Männer
 < 60</td>
 U/I

 Frauen
 < 40</td>
 U/I

 Kinder
 < 6 Monate</td>
 < 160</td>
 U/I

< 6 Monate < 160 U/I < 1 Jahr < 100 U/I

Gastrin *

Methode RIA

Material Serum, tiefgefroren

Häufigkeit bei Bedarf Referenzbereich < 90 ng/l *Fremdleistung: Parameter wird versendet

GBM-AK

Siehe Autoantikörper gegen Glomeruläre Basalmembran

Gentamycin

Methode EMIT

Material Hep.-Plasma

Häufigkeit täglich Therapeutischer Bereich < 2 mg/l

Gerinnungsfaktor I

Siehe Fibrinogen

Gerinnungsfaktor II (Prothrombin)

Methode Koagl.

Material Citratplasma

Häufigkeit täglich

Referenzbereich

Erwachsene 70 - 120 %

Kinder

< 2 Monate 30 - 60 %

Gerinnungsfaktor V

Methode Koagl.

MaterialCitratplasmaHäufigkeittäglichReferenzbereich70 – 120 %

Gerinnungsfaktor VII

Methode	Koagl.
Material	Citratplasma
Häufigkeit	täglich
Referenzbereich	

Erwachsene

70 - 120 % Kinder < 2 Monate

20 70 %

Gerinnungsfaktor VIII

Methode Koagl. Material Citratplasma Häufigkeit täglich Referenzbereich 80 - 120 %

Gerinnungsfaktor IX

Methode	Koagl.
Material	Citratplasma
Häufigkeit	täglich

Referenzbereich Erwachsene 70 - 120 % Kinder

Gerinnungsfaktor X

Methode Koagl.
Material Citratplasma
Häufigkeit täglich

Referenzbereich

Erwachsene 70 - 120 % Kinder < 2 Monate 40 - 70 %

Gerinnungsfaktor Xa*

Methode Koagl.

Material Citratplasma
Häufigkeit täglich

Therapeutischer Bereich siehe Befundbericht

*für funktionelles Monitoring von:

Danaparoid,(Orgaran) Fondaparinux (Arixtra) LWM-Heparin

^{*} Hinweis: Um ein aussagekräftiges Ergebnis unter standardisierten Bedingungen zur Beurteilung des Heparinspiegels (Anit-Xa-Aktivität) zu erhalten, sollte die Blutentnahme genau 4 Stunden nach der subkutanen Injektion erfolgen. Die zu prüfende Substanz ist unbedingt auf dem Anforderungsschein zu vermerken.

Gerinnungsfaktor XI

Methode	Koagl.
Material	Citratplasma
Häufigkeit	täglich

Referenzbereich

Erwachsene 70 - 120 % Kinder < 4 Monate 30 - 40 %

Gerinnungsfaktor XII

Methode Material Häufigkeit	Koagl. Citratplasma täglich					
Referenzbereich Erwachsene Kinder		80	-	120	%	
Miliael	< 2 Monate	30	_	50	%	

Gerinnungsfaktor XIII

Methode	Koagl.
Material	Citratplasma
Häufigkeit	täglich
Referenzbereich	80 – 120 %

Gesamteiweiß

Siehe Eiweiß

GH

Siehe STH, Somatotropes Horman

Gliadin-Antikörper

Siehe Autoantikörper gegen Gliadin

Glomeruläre Basalmembran

Siehe Autoantiköper gegen glomeruläre Basalmembran

Glucose im Blut

Methode Material Häufigkeit		Enzym. HepPlas täglich	sma			
Referenzbereich Erwachsene Kinder		65		-	110	mg/dl
	< 1 Tag		20	-	60	mg/dl
	2 - 5 Tage		20	-	75	mg/dl
	< 1 Jahr		35	-	70	mg/dl
	1 - 16 Jahre	,	45	_	110	ma/dl

Glucose im Liquor

Enzym.
HepPlasma
täglich
49 – 75 mg/dl

Glucose im Punktat

Methode Enzym.
Material Hep.-Plasma
Häufigkeit täglich

Glucose im Urin

Methode Enzym.

Material Urin

Häufigkeit täglich

Referenzbereich < 0,2 g/l

Glucose-6-Phosphat-Dehydrogenase *

Methode Phot.

Material EDTA-Blut
Häufigkeit täglich
Referenzbereich 7 – 20,5 U/gHb
*Fremdleistung: Parameter wird versendet

Glutathion-S-Transferase alpha (GST-alpha)

Methode ELISA
Material Serum
Häufigkeit bei Bedarf
Referenzbereich < 7,5 μg/l*

*95 % der untersuchten 219 Blutspender zeigten eine GST-

alpha-Wert $< 7.5 \mu g/I$

GOT (AST)

Siehe Aspartat-Aminotransferase

GP Ilb-Illa-Inhibitor

Methode Aggr.
Material Citratblut
Häufigkeit bei Bedarf
therapeutischer Bereich Gute Wirkung

GPT (ALAT)

Siehe Alanin-Aminotransferase

Großes Blutbild Siehe Blutbild

Н

Hämatokrit

Siehe Blutbild

Hämochromatose-Gentest (HFE-Gen)

Methode PCR

Material EDTA-Blut Häufigkeit bei Bedarf

Hämoglobulin (Hb)

Siehe Blutbild

Hämoglobin A1c

siehe Hb-A1c

Hämoglobin A₂

Siehe Hämoglobinelektrophorese

Hämoglobine und seine Varianten

Auftrennung des Hämoglobins in die Untereinheiten Hb-A, Hb-A₂, Hb-F und Nachweis path. Hämoglobine wie Hb-S o. Hb-C

Methode Material Häufigkeit Referenzbereich	HPLC EDTA-Blut bei Bedarf		
Erwachsene Hb-A		07	0/
		97	%
Hb-Ao		90	%
Hb-A ₂		1,8-3,5	%
Hb-F		< 1	%
Kinder			
Hb-A ₂	< 1 Monat	< 0,5	%
		1,8-3,5	%
Hb-F	< 1 Monat	60-80	%
	1-2 Monate	40-60	%
	3-4 Monate	8-40	%
	5-6 Monate	2,5-7	%
	7-12 Monate	> 2,5	%
Path. Hämoglo		<i>></i> 2,5	/0
raili. Halliogio			
	Hb-C		
	Hb-S		

Hämoglobin F (Hb-F)

Siehe Hämoglobine und seine Varianten

Hb-F-Zellen

Methode man. Diff-BB Material EDTA-Blut Häufigkeit bei Bedarf

Referenzbereich < 0,1 %

Haptoglobin

Methode Turb.
Material Hep.-Plasma
Häufigkeit täglich

Referenzbereich

Erwachsene 0,3 - 2,0 g/l

Kinder:

Harnsäure im Punktat/Dialysat

Methode Enzm.

Material Punktat/Dialysat

Häufigkeit täglich

Referenzbereich 0,5 - 7,0 mg/dl

Harnsäure im Plasma

Methode Enzm.

Material Hep.-Plasma

Häufigkeit täglich

Referenzbereich

 Männer
 < 7,0</th>
 mg/dl

 Frauen
 < 6,0</td>
 mg/dl

Kinder

< 1 Jahr 1,0 - 6,0 mg/dl

Harnsäure im Urin

Methode Enzm.

Material Urin*

Häufigkeit täglich

Referenzbereich 250 – 980 mg/24 Std.

*24 Std.-Sammelurin ohne Zusätze

Harnsäure im Urin / Kreatinin

Methode Enzm.
Material Urin
Häufigkeit täglich

Referenzbereich

Erwachsene ≤ 3 mg/mg Krea

Kinder:

 \leq 1 Jahr \leq 3 mg/mg Krea 1-17 Jahre \leq 2 mg/mg Krea

Harnsäure im Dialysat

Methode Fnzm. Material Dialysa Häufigkeit täglich

Referenzbereich 3 - 40mg/dl

Harnstoff im Plasma

Methode Enzm.

Material Hep.-Plasma Häufigkeit täglich

Referenzbereich

Erwachsene < 45 mg/dl Kinder < 1 Jahr < 27 mg/dl

Harnstoff im Urin

Methode Fnzm. Urin* Material Häufigkeit täglich

Referenzbereich

Frwachsene < 30 000 mg/d Kinder

> < 1 Jahr < 4 000 mg/d < 2 Jahre < 10 000 mg/d < 16 Jahre < 20 000 mg/d

*24 Std.-Sammelurin ohne Zusätze

Hb-A1c

Methode HPLC
Material EDTA-Blut
Häufigkeit täglich

Referenzbereich

NGSP* < 6,1 % Ges.-Hb IFCC** 20 – 42 mmol/mol

Hb F-Zellen (fetale Erythrozyten)

siehe Blutbild

HDL

siehe Cholesterin

Helicobacter pylori-AK

Methode ELISA
Material Serum
Häufigkeit bei Bedarf

Referenzbereich < 10 (10 – 16*) U/ml

*grenzwertig

^{*:} National Glycohemoglobin Standardization Program

^{**:} International Federation of Clinical Chemistry and Laboratory Medicine

Helicobacter pylori Antigennachweis im Stuhl

Methode ELISA
Material Stuhl
Häufigkeit bei Bedarf
Referenzbereich negativ

Hepatitis-Serologie

Hepatitis A

Anti-HAV (ges.)

Methode CLIA

Material Serum/Hep.-Plasma

Häufigkeit täglich

Kombinierter Suchtest (IgG/IgM) auf Antikörper gegen Hepatitis A Virus. Positives Ergebnis spricht für zurückliegende oder akute Infektion oder Zustand nach Impfung. Weitere Differenzierung mittels Anti-HAV (IgM) bei Verdacht auf akute Infektion.

Anti-HAV (IgM)

Methode CLIA

Material Serum/Hep.-Plasma

Häufigkeit täglich

Nachweis von IgM-Antikörpern gegen Hepatitis A Virus bei Verdacht auf akute Infektion.

Hepatitis B

HBs-Antigen

Methode CMIA

Material Serum/Hep.-Plasma

Häufigkeit täglich

Untersuchung bei Verdacht auf Infektion mit Hepatitis B Virus (akut oder chronisch). Positives Ergebnis spricht für aktive Infektion. Bei negativem Ergebnis weitere serologische Untersuchungen (anti-HBc gesamt, anti-HBs) zum Ausschluss einer chronischen Infektion notwendig.

HBs-Antigen - Bestätigung

Methode CMIA

Material Serum/Hep.-Plasma

Häufigkeit täglich

Zusatzuntersuchung bei positiven HBs-Antigen zum Ausschluß einer unspezifischen Reaktion. (Veranlassung durch zuständiges Laborpersonal, keine Einsenderanforderung)

Anti-HBc (ges.)

Methode CMIA

Material Serum/Hep.-Plasma

Häufigkeit täglich

Kombinierter Suchtest (IgG/IgM) bei Verdacht auf zurückliegende, akute oder chronische Infektion mit Hepatitis B Virus. Durchseuchungsmarker. Bei positivem Ergebnis sollte eine aktive Infektion durch zusätzliche Untersuchungen (mindestens HBsAg, anti-HBs) abgeklärt werden. Je nach Konstellation können eine Erweiterung der Serologie (anti-HBc-IgM, HBeAg, anti-HBe) sowie eine Bestimmung der Viruslast sinnvoll sein.

Anti-HBc (IgM)

Methode CMIA

Material Serum/Hep.-Plasma

Häufigkeit täglich

Untersuchung zur Differenzierung eines positiven Suchtests. Nachweis von anti-HBc-IgM spricht für akute Infektion mit Hepatitis B Virus oder für akuten Schub einer chronischen Infektion.

Anti-HBs

Methode CLIA

Material Serum/Hep.-Plasma

Häufigkeit täglich

Nachweis einer abgelaufenen Infektion mit Hepatitis B Virus oder Zustand nach Impfung. Verlaufsuntersuchung bei Immunglobulin-Therapie. Positives Ergebnis spricht je nach serologischer Konstellation und Titer für eine Immunität gegen Hepatitis B Virus.

HBe-Antigen

Methode CLIA

Material Serum/Hep.-Plasma

Häufigkeit täglich

Untersuchung zur erweiterten Diagnostik bei Nachweis einer Infektion mit Hepatitis B Virus. Positives Ergebnis spricht für hohen Infektiositätsgrad.

Anti-HBe

Methode CLIA

Material Serum/Hep.-Plasma

Häufigkeit täglich

Untersuchung zur erweiterten Diagnostik bei Nachweis einer Infektion mit Hepatitis B Virus. Positives Ergebnis bei Übergang in Phase mit niedriger Virusreplikation, beginnender Rekonvaleszenz oder Ausheilung. Chronische Infektion mit hoher Viruslast jedoch nicht ausgeschlossen.

Hepatitis C

Anti-HCV

Methode CMIA

Material Serum/Hep.-Plasma

Häufigkeit täglich

Suchtest bei Verdacht auf akute, chronische oder zurückliegende Infektion mit Hepatitis C Virus.

Humanes Immundefizienz Virus

HIV 1 / 2 Suchtest

Methode CLIA / CMIA

Material Serum/Hep.-Plasma

Häufigkeit täglich

Kombinierter Suchtest (anti-HIV1/2 plus p24 Antigen) bei Verdacht auf Infektion mit HIV.

Hirudin und Analoga

Methode Ecarin-Zeit
Material Citratplasma
Häufigkeit bei Bedarf

Referenzbereich siehe Befundbericht

Homocystein

Methode CLIA
Material EDTA-Blut*
Häufigkeit täglich
Referenzbereich < 12 µmol/l

Homovanilinsäure im Urin

Method Materia Häufigk	l eit				HP Urir bei		
Referer				17	-	38	μmol/24h
Erwach	sene	e:			<	5	mmol/mol
1.01							Kreatinin
Kinder		4	برماما			00	
	<	1	Jahr		<	20	mmol/mol
4		4	Jahre			14	Kreatinin mmol/mol
1	-	4	Janre		<	14	
_		0	lahra			0	Kreatinin
5	-	9	Jahre		<	9	mmol/mol
10		10	مسما ما				Kreatinin
10	-	19	Jahre		<	8	mmol/mol
							Kreatinin

^{*24} Std.-Sammelurin angesäuert

^{*}Probe muss gekühlt (auf Eis) ins Labor gesandt werden.

Mono-Hydroxy-Carbamazepin/10- Hydroxy-Carbamazepin

(wirksamer Metabolit des Oxcarbazepin)
Methode HPLC
Material Serum
Häufigkeit bei Bedarf
Referenzbereich 10 – 35 mg/l

18-Hydroxy-Corticosteron

ry-korrigierter
Į

Chromatographie

Material Serum/EDTA-Plasma

Häufigkeit wöchentlich

Referenzbereich

Erwachsene	liegend	12	-	55	ng/dl
	aufrecht	23	-	145	ng/dl

Kinder 1 Mo – 1 Jahr 5 – 220 ng/dl

1 — 2 Jahre 18 - 155 ng/dl 2 — 15 Jahre 6 - 88 ng/dl Frühgeboren < 670 ng/dl Neugeboren < 550 ng/dl

18-Hydroxy-Corticosteron, frei im Urin

Methode RIA nach recovery-korrigierter

Chromatographie

Material Urin*

Häufigkeit wöchentlich

Referenzbereich $1,5-6,5 \mu g/24 \text{ Std}$

* 24 Std.-Sammelurin ohne Zusätze

18-Hydroxy-Cortisol

Methode RIA nach recovery-korrigierter

Chromatographie

Material Serum/EDTA-Plasma Häufigkeit Wöchentlich

Häufigkeit Referenzbereich

30 - 130 ng/dl

18-Hydroxy-Cortisol, frei im Urin

Methode RIA nach recovery-korrigierter

Chromatographie

Material Urin*

Häufigkeit wöchentlich

Referenzbereich 40 – 145 µg/24 Std

* 24 Std.-Sammelurin ohne Zusätze

5-Hydroxy-Indol-Essigsäure (5-HIES)

(Serotonin-Metabolit)

Methode HPLC
Material Urin*
Häufigkeit bei Bedarf
Referenzbereich < 8 mg/24 h

*24 Std.-Sammelurin angesäuert

17-Hydroxypregnenolon

Methode RIA nach recovery-korrigierter

Extraction

Material Serum/EDTA-Plasma

Häufigkeit wöchentlich

Referenzbereich

Frwachsene na/dl 30 350 Kinder 1 Mo – 1 Jahr 36 760 ng/dl präpubertär 15 235 ng/dl Frühgeboren 829 ng/dl < Neugeboren na/dl < 3600

17-Hydroxypregnenolon, frei im Urin

Methode RIA nach recovery-korrigierter

Extraction

Material Urin*

Häufigkeit wöchentlich

Referenzbereich 95 – 500 ng/24 Std

^{* 24} Std.-Sammelurin ohne Zusätze

17-Hydroxyprogesteron

Methode RIA nach recovery-korrigierter

Chromatographie Serum/EDTA-Plasma

Häufigkeit Wöchentlich

Referenzbereich

Material

Erwachsene 0,2 - 2,2 ng/ml
Kinder < 1 Monat < 3,0 ng/ml

< 1 Jahr 0,07 - 2,0 ng/ml 1 - 9 Jahre 0,03 - 0,9 ng/ml 10 - 17 Jahre 0,1 - 2,2 ng/ml

17-Hydroxyprogesteron, frei im Urin

Methode RIA nach recovery-korrigierter

Chromatographie

Material Urin*

Häufigkeit wöchentlich

Referenzbereich 400 – 1300 ng/24 Std

^{* 24} Std.-Sammelurin ohne Zusätze

17-Hydroxyprogesteron im Speichel

Methode RIA nach recovery-korrigierter

Chromatographie

Material Speichel Häufigkeit wöchentlich

Referenzbereich 0,07-0,17 ng/ml

Hydroxrisperidon

Siehe Resperidon

25-Hydroxy-Vitamin D

Methode CLIA
Material Serum
Häufigkeit bei Bedarf
Referenzbereich 6,3 – 46,4 ng/ml

Hypochrome Erythrozyten siehe Blutbild

IgA, IgD, IgE, IgG, IgM siehe Immunglobuline

IGF-1 (Somatomedin C)

Methode			_	CLIA							
Material	Serum hai Badart										
Häufigkeit Referenzb		bei Bedarf									
Kinder		JI I									
Kilidei		<	5 Jahre	w	33.5		171,8	ng/ml			
		`	Janie	m	27,4	-	113,5	ng/ml			
	6		8 Jahre	W	79,8		244,0				
	0	-	o Janie		,		,	ng/ml			
	0		11 lobro	m	54,9	-	206,4	ng/ml			
	9	-	11 Jahre	W	87,4	-	399,3	ng/ml			
	40		45 1-1	m	85,2	-	248,8	ng/ml			
	12	-	15 Jahre	W	188,4	-	509,9	ng/ml			
-				m	115,4	-	498,2	ng/ml			
Frauen											
	16	-	20 Jahre		267,5	-	470,8	ng/ml			
	21	-	24 Jahre		149,1	-	332,3	ng/ml			
	25	-	39 Jahre		107,8	-	246,7	ng/ml			
	40	-	54 Jahre		92,7	-	244,6	ng/ml			
		>	55 Jahre		54,0	-	204,4	ng/ml			
Männe	r										
Maille	16	_	20Jahre		247,3	_	481,7	ng/ml			
	21	_	24 Jahre		187,9	_	400,0				
		-			,		,	ng/ml			
	25		39 Jahre		96,4	-	227,8	ng/ml			
	40	-	54 Jahre		88,3	-	209,9	ng/ml			
		>	55 Jahre		54,6	-	185,7	ng/ml			

IgG im Urin

Methode Neph.
Material Urin
Häufigkeit bei Bedarf

IgG-Subklassen (IgG 1, 2, 3, 4)

	Neph.			
	Serum			
	bei Bedarf			
ch IgG 1				
< 1 Monat	2,4	-	10,6	g/l
1-4 Monate	1,8	-	6,7	g/l
4-6 Monate	1,8	-	7,0	g/l
6 - 12 Monate	2,0	-	7,7	g/l
1 - 2 Jahre	2,5	-	8,5	g/l
3 - 4 Jahre	3,2	-	9,4	g/l
5-6 Jahre	3,7	-	10,0	g/l
7 - 9 Jahre	4,0	-	10,8	g/l
0 - 12 Jahr	e 4,0	-	11,5	g/l
13 – 18 Jahre	3,7	-	12,8	g/l
Erwachsene	4,9	-	11,4	g/l
	<1 Monat 1 - 4 Monate 4 - 6 Monate 6 - 12 Monate 1 - 2 Jahre 3 - 4 Jahre 5 - 6 Jahre 7 - 9 Jahre 0 - 12 Jahr 13 - 18 Jahre	Serum bei Bedarf ch	Serum bei Bedarf ch IgG 1	Serum bei Bedarf ch

IgG-Subklassen (IgG 1, 2, 3, 4) (Fortsetzung)

-					
Referenzbereich	IgG 2				
0 – 1	Monat	0,87	-	4,1	g/l
1 – 4	Monate	0,38	-	2,1	g/l
4 – 6	Monate	0,34	-	2,1	g/l
6 – 12	2 Monate	0,34	-	2,3	g/l
1 - 2	2 Jahre	0,38	-	2,6	g/l
3 –	4 Jahre	0,52	-	3,0	g/l
5 –	6 Jahre	0,72	-	3,4	g/l
7 –	9 Jahre	0,85	-	4,1	g/l
10 –	12 Jahre	0,98	-	4,8	g/l
13 –	18 Jahre	1,06	-	6,1	g/l
Erwad	chsene	1,5	-	6,4	g/l
					_

Referenzbereich	IgG 3				
0 – 1	Monat	0,14	-	0,55	g/l
1 – 4	Monate	0,14	-	0,70	g/l
4 – 6	Monate	0,15	-	0,80	g/l
6 – 12	Monate	0,15	-	0,97	g/l
1 – 2	Jahre	0,15	-	1,13	g/l
3 –	4 Jahre	0,14	-	1,26	g/l
5 –	6 Jahre	0,13	-	1,33	g/l
7 –	9 Jahre	0,13	-	1,42	g/l
10 –	12 Jahre	0,15	-	1,49	g/l
13 – 1	18 Jahre	0,18	-	1,63	g/l
Erwac	hsene	0,20	-	1,10	g/l

IgG-Subklassen (IgG 1, 2, 3, 4) (Fortsetzung)

Referenzbereich	IgG 4				
0 – 1	Monat	0,04	-	0,55	g/l
1 – 4	Monate		-	0,36	g/l
4 – 6	Monate		-	0,23	g/l
6 – 12	2 Monate		-	0,43	g/l
1 – 2	2 Jahre		-	0,79	g/l
3 -	4 Jahre		-	1,27	g/l
5 –	6 Jahre		-	1,58	g/l
7 –	9 Jahre		-	1,89	g/l
10 –	12 Jahre	0,03	-	2,1	g/l
13 –	18 Jahre	0,04	-	2,3	g/l
Erwad	hsene	0,08	-	1,4	g/l

Interleukin 2-Rezeptor, löslicher (sIL-2-R, sCD 25)

Methode CLIMA Material Serum

Häufigkeit täglich: Mo.-Fr. Referenzbereich < 900 U/ml

Imipramin

Methode HPLC
Material Serum
Häufigkeit bei Bedarf
Therapeutischer Bereich 175 – 350 μg/l
Hinweis: Abnahme 10 – 15 h nach letzter Dosis

Immunelektrophorese im Serum (Immunfixation)

Methode IFE

Material Serum

Häufigkeit täglich Mo.-Fr.
Referenzbereich siehe Befundbericht

Immunelektrophorese im Urin (Immunfixation)

Methode IFE Material Urin

Häufigkeit täglich Mo.-Fr.

Referenzbereich siehe Befundbericht

Immunglobulin A (IgA) im Liquor

Methode Neph. Material Liquor

Häufigkeit täglich: Mo.-Fr.

Immunglobulin A (IgA) im Serum

Methode Material Häufigkeit	Neph. Serum täglich M				
Referenzbereich Erwachsene Kinder		0,7	-	4,0	g/l
	< 3 Monate		<	0,1	g/l
	3 - 12 Monate	0,1	-	0,69	g/l
	1 - 4 Jahre	0,2	-	1,29	g/l
	5 - 17 Jahre	0,5	-	2,48	g/l

Immunglobulin D (IgD) im Serum

Methode	Neph.
Material	Serum
Häufigkeit	bei Bedar

Referenzbereich 1,3 – 152,7 mg/l

Immunglobulin E (IgE) im Serum

Methode CLIA/FEIA
Material Serum
Häufigkeit täglich Mo.-Fr.

Referenzbereich

Erwachsene U/ml < 100 Kinder < 28 Tage < 1.5 U/ml < 6 Monate < 15 U/ml 7 - 12 Monate < 25 U/ml 1 Jahre < 66 U/ml Jahre < 118 U/ml 7 - 10 Jahre < 330 U/ml

Jahre

U/ml

< 240

Immunglobulin G (IgG) im Liquor

11

Methode Neph. Material Liquor

Häufigkeit täglich Mo.-Fr.

- 14

Immunglobulin G (IgG) im Serum

Methode Neph. Material Serum

Häufigkeit täglich Mo.-Fr.

Referenzbereich

Erwachsene 7,0 - 16,0 g/l Kinder

> < 3 Monate 1,44 8,64 q/I - 12,5 3 - 12 Monate 3,84 g/l 1 - 4 Jahre 3.84 12.5 g/I > 5 Jahre 7.0 16.0 g/I

Immunglobulin M (IgM) im Liquor

Methode Neph. Material Liquor

Häufigkeit täglich Mo.-Fr.

Immunglobulin M (IgM) im Serum

Methode Neph. Material Serum

Häufigkeit täglich Mo.-Fr.

Referenzbereich

Erwachsene 0,40 - 2,30 g/l Kinder

1 - 7 Tage	0,06	-	0,21	g/l
< 3 Monate	0,17	-	0,66	g/l
3 - 12 Monate	0,26	-	1,00	g/l
1 - 8 Jahre	0,33	-	1,25	g/l
> 8 Jahre	0,37	-	1,43	g/l

INR (International Normalized Ratio)

Siehe Quicktest

Insulin

Methode CLIA Material Serum

Häufigkeit täglich. Mo.-Fr. Referenzbereich 6 – 25 mU/l

Insulin-Ak

MethodeRIAMaterialSerumHäufigkeitauf AnfrageReferenzbereichnegativ

Intrinsic-Faktor-AK

Siehe Autoantikörper gegen Intrinsic-Faktor

In vitro Blutungszeit

Siehe PFA- 100

Isoelektrische Fokussierung (Oligoklonale Banden)

Methode Elpho Material Liquor Häufigkeit bei Bedarf

Referenzbereich siehe Befundbericht

Isoenzyme der Alkalischen Phosphatase (AP)

Siehe Alkalische Phosphatase

Isoenzyme der Amylase

Siehe Amylase

Isoenzyme der Creatinkinase (CK)

Siehe Creatinkinase

Isoenzyme der Lactat-Dehydrogenase (LDH)

Siehe LDH

Kalium im Dialysat

Methode ISE Material Dialysat Häufigkeit täglich

Referenzbereich 0,7 - 1,0 mmol/l

Kalium im Plasma

Methode ISE

Material Hep.-Plasma

Häufigkeit täglich

Referenzbereich

Erwachsene 3,5 - 4,8 mmol/l

Kinder

< 1 Monat 3,8 - 5,7 mmol/l < 1 Jahr 3,6 - 6,0 mmol/l

Kalium im Urin

Methode ISE
Material Urin*
Häufigkeit täglich

Referenzbereich 35 - 125 mmol/24 Std. 0,8 - 3,8 mmol/24 Std. kg Körpergewich

^{* 24} Std-Sammelurin ohne Zusätze

Kappa(κ)-Leichtketten im Serum

Methode Neph.
Material Serum
Häufigkeit bei Bedarf
Referenzbereich 3,3 – 19,4 g/l

Kappa(κ)-Leichtketten im Urin

Methode Neph. Material Urin

Häufigkeit bei Bedarf

Referenzbereich < 10,0 mg/l

Katecholamine im Plasma

Methode HPLC
Material Plasma*
Häufigkeit bei Bedarf

Referenzbereich

Adrenalin < 464 pmol/l Noradrenalin < 1625 pmol/l Dopamin < 560 pmol/l *Spezialröhrchen im Labor anfordern und nach Blutentnahme sofort gekühlt (4°C) zurückschicken!

Katecholamine im Urin

	•						
Methode			HPLC				
Material				Urin*			
Häufigkeit				Bei Be	darf		
*24 Std-Sammelurir	n an	gesäuer	t				
Referenzbereich							
Adrenalin					<	109	nmol/24h
Noradrenalin				136	-	620	nmol/24h
DopaMin.				1,26	-	3,0	μmol/24h
Metanephrin				375	-	1506	nmol/24h
Normetanephrin	1			573	-	1932	nmol/24h
Vanillinmandels		9		17	-	33	μmol/24h
							p
Adrenalin							
Erwachs	sene	<u>,</u>	<	16	nn	nol/mmo	l Kreatinin
Kinder							
<	1	Jahr	<	47	nn	nol/mmo	l Kreatinin
1 -	4	Jahre	<	34	nn	nol/mmo	l Kreatinin
4 -	19	Jahre	<	22	nmol/mmol Kreatinin		
·			-				
Noradrenalin							
Erwachs	sene	<u>,</u>	<	77	nn	nol/mmo	l Kreatinin
Kinder							
<	1	Jahr	<	280	nn	nol/mmo	l Kreatinin
1 -	4	Jahre	<	80			l Kreatinin
4 -		Jahre	<	60			l Kreatinin
•							

Katecholamine im Urin (Fortsetzung)

Metane Kind		in					
	<	3	Monate	116	-	407	nmol/mmol Krea.
3	-	6	Monate	41	_	289	nmol/mmol Krea.
6	-	9	Monate	86	_	302	nmol/mmol Krea.
9	-	12	Monate	85	_	374	nmol/mmol Krea.
1	_	2	Jahre	23	_	302	nmol/mmol Krea.
2	_	6	Jahre	42	_	289	nmol/mmol Krea.
6	_	10	Jahre	69	_	183	nmol/mmol Krea.
10	-	_	Jahre	26	_	176	nmol/mmol Krea.
. •		. •	040				
Normet	ane	ephr	in				
Kinc		-					
_	<	3	Monate	947	-	2070	nmol/mmol Krea.
3	-	6	Monate	454	_	1354	nmol/mmol Krea.
6	-	9	Monate	365	_	654	nmol/mmol Krea.
9	-	12	Monate	167	-	689	nmol/mmol Krea.
1	-	2	Jahre	216	_	787	nmol/mmol Krea.
2	-	6	Jahre	64	_	376	nmol/mmol Krea.
6	_	10	Jahre	63	_	280	nmol/mmol Krea.
10	-	16	Jahre	60	_	255	nmol/mmol Krea.
-							
Vanillin	ma	ndel	säure				
Erwach			oaaro			< 3	μmol/mmol Krea.
Kinc						, ,	p
	<	1	Jahr			< 11	μmol/mmol Krea.
1	_	4	Jahre			< 6	μmol/mmol Krea.
4	_		Jahre			< 5	μmol/mmol Krea.
•		. •				٠. ٠	F

Knochen-AP-Isoenzym (BAP), Ostase

Siehe AP-Isoenzyme

Knochenmark

(Hämatomyelogramm-Normalverteilung)
Methode Mikrosk.
Material Knochenmark
Häufigkeit täglich Mo – Fr

Referenzbereich

Neutrophile (gesamt)	49,2	-	65,0	%
Myeloblasten	0,2	-	1,5	%
Promyelozyten	2,1	-	4,1	%
Myelozyten	8,2	-	15,7	%
Metamyelozyten	9,6	-	24,6	%
Stabkernige	9,5	-	15,3	%
Segmentkernige	6,0	-	12,0	%
Eosinophile (geasmt)	1,2	-	5,3	%
Myelozyten	0,2	-	1,3	%
Metamyelozyten	0,4	-	2,2	%
Stabkernige	0,2	-	2,4	%
Segmentkernige	0,0	-	1,3	%
Basophile u. Mastzellen	0,0	-	0,2	%
Erythropoese (gesamt)	18,4	-	33,8	%
Makroblasten	0,2	-	1,3	%
Basophile Normoblasten	0,5	-	2,4	%
Polychrom. Normoblasten	17,9	-	29,2	%
Orthochrom. Normoblasten	0,4	-	4,6	%
Lymphozyten	11,1	-	23,2	%
Plasmazellen	0,4	-	3,9	%
Monozyten	0,0	-	0,8	%
Megakaryozyten	0,0	-	0,4	%
Retikulumzellen	0,0	-	0,9	%

Sideroblasten

Methode Mikrosk.

Material Knochenmark
Häufigkeit täglich Mo – Fr
Referenzbereich < 15 %

Kokainmetabolite

Siehe Drogenscreening

Komplement

Siehe C1-Esterase-Inhibitor C3c C4

Kreatinin im Dialysat

Methode Phot. Material Dialysat Häufigkeit täglich

Referenzbereich 0,1-2,0 mg/dl

Kreatinin im Plasma/Serum

Methode Material Häufigkeit Referenzbere	siah		Pho Her tägl	oPlasma	-Plasma				
Erwachse Kinder	-			0,1	-	1,3	mg/dl		
	≤	1	Tag	0,4	-	1,3	mg/dl		
2	-	7	Tage	0,16	-	1,0	mg/dl		
	<	1	Monat	0,1	-	0,6	mg/dl		
	<	1	Jahr	0,1	-	0,65	mg/dl		
1	-	6	Jahre	0,3	-	0,8	mg/dl		
7	-	13	Jahre	0,3	-	1,0	mg/dl		
14	-	17	Jahre	0,3	-	1,2	mg/dl		

Kreatinin im Urin

Methode Phot.
Material Urin*
Häufigkeit täglich

Referenzbereich < 2000 mg/d

^{*24} Std.-Sammelurin ohne Zusätze

Kreatinin-Clearance

(bitte Gewicht und Größe des Patienten angeben sowie Sammeldauer und Sammelvolumen)

Methode Phot.

Material Urin* + Hep.-Plasma

Häufigkeit täglich

*24 Std.-Sammelurin ohne Zusätze Referenzbereich

Kindor

Kinder							
	≤	1	Woche	39	-	62	ml/min
	\leq	7	Monat	54	-	76	ml/min
	\leq	1	Jahr	64	-	108	ml/min
Erwachser	ne ♀						
	<	60	Jahre	90	-	120	ml/min
60	-	69	Jahre	45	-	75	ml/min
70	-	89	Jahre	35	-	60	ml/min
	≥	90	Jahre	26	-	42	ml/min
Erwachser	ne ♂						
	<	60	Jahre	90	-	120	ml/min
60	-	69	Jahre	54	-	98	ml/min
70	-	79	Jahre	50	-	70	ml/min
80	-	89	Jahre	30	-	60	ml/min
	≥	90	Jahre	26	-	44	ml/min

Kryoglobuline

Methode Präzipitation
Material Serum
Häufigkeit bei Bedarf
Referenzbereich (Kryokrit) < 0,4 %

Kupfer im Lebergewebe

Methode AAS (Graphitrohr)
Material Lebergewebe
Häufigkeit bei Bedarf
Referenzbereich < 50 µg/g TG*

*Trockengewicht des Lebergewebes nach Veraschung

der Probe

Kupfer im Serum

MethodeAAS (Flamme)MaterialSerumHäufigkeitbei BedarfReferenzbereich12 – 24 µmol/l

Kupfer im Urin

Methode AAS (Graphitrohr)

Material Urin

Häufigkeit bei Bedarf

Referenzbereich

L

Lactat im Liquor

Methode	Enzym.						
Material	Liquor						
Häufigkeit	täglich						
Referenzbereich	· ·						
Erwachsene	<	50	Jahre	1,5	-	2,1	mmol/l
	>	50	Jahre	1,7	-	2,6	mmol/l
Kinder	<	15	Jahre	1,1	-	1,8	mmol/l

Lactat im Plasma

Methode Material Häufigkeit			Enzy Plasi täglid	ma*			
Referenzbereich Erwachsene Kinder				0,9	-	1,6	mmol/l
	<	7	Tage		<	0,37	mmol/l
	<	3	Monate		<	1,35	mmol/l
	<	15	Jahre	1,1	-	1,8	mmol/l
*Notrium Eluarid	/NIoE	\ Dloor	m 0				

^{&#}x27;Natrium-Fluorid (NaF)-Plasma

Lactoferrin im Stuhl

Methode ELISA
Material Stuhl

Häufigkeit bei Bedarf

Referenzbereich $0 - 7,24 \mu g/g$ Stuhl

Lambda (λ)-Leichtketten im Serum

MethodeNeph.MaterialSerumHäufigkeitbei BedarfReferenzbereich5,7 – 26,3 g/l

Lamda(λ)-Leichtketten im Urin

Methode Neph. Material Urin

 $\begin{array}{ll} \mbox{H\"{a}}\mbox{ufigkeit} & \mbox{bei Bedarf} \\ \mbox{Referenzbereich} & < 5,0 \mbox{ mg/l} \end{array}$

Lamotrigin

Methode HPLC.

Material Serum
Häufigkeit bei Bedarf
Therapeutischer Bereich 2 – 14 mg/l
Hinweis: Abnahme vor der nächsten Dosis

LDH (Lactatdehydrogenase)

Methode	Phot.
Material	Plasma
Häufigkeit	täglich

Referenzbereich

Erwachsene		<	248	U/I
Kinder	< 1 Monat	<	780	U/I
	< 1 Jahr	<	416	U/I

LDH (Lactatdehydrogenase) im Punktat

Methode Phot.

Material Punktat

Häufigkeit täglich

Referenzbereich < 248 U/l

LDH-Isoenzyme *

Methode	Elpho.
Material	Serum
Häufigkeit	bei Bedarf

Referenzbereich

LDH-1	16,0	-	31,0	%
LDH-2	29,0	-	42,0	%
LDH-3	17,0	-	26,0	%
LDH-4	6,0	-	12,0	%
LDH-5	3,0	-	17,0	%

^{*}Fremdleistung: Parameter wird versendet

LDL

Siehe Cholesterin

Leichtketten

Siehe Immunelektrophorese (Immunfixation), Kappa-Leichtketten, Lambda-Leichtketten

Leptin

Methode	EIA
Material	Serum
Häufigkeit	bei Bedarf

Referenzbereich

Leukozyten

Siehe Blutbild

Leukozyten im Urin

Methode Digitale Photographie

Spontanurin Material

Häufigkeit täglich

Referenzbereich

Erwachsene Leuko/µl < 8 Kinder < 17 Jahre < 4 Leuko/µl

LH (Luteinisierendes Hormon)

Methode	Phot.
Material	Hep. Plasma
Häufigkeit	täglich

Re

eferenzbereich	J				
Männer		1,5	-	9,3	U/I
Frauen		0,5	-	12,0	U/I
	postmenop.	14,0	-	60,0	
Kinder					
2 – 11 Monate	m, w	0,02	-	8,0	U/II
1 – 10 Jahre	m	0,04	-	3,6	U/I
	W	0,03	-	3,9	U/I

LH/FSH-Stimulationstest

Siehe Anhang Funktionsteste

Lipase im Plasma

Methode Phot.

Material Hep.-Plasma Häufigkeit täglich

Referenzbereich < 51 U/I

Lipase im Punktat

Methode Phot.
Material Punktat
Häufigkeit täglich

Lipoprotein (a)

Methode Neph. Material Serum

Häufigkeit täglich Mo.-Fr. Referenzbereich 50 - 250 ng/ml

Liquordiagnostik

Material Liquor + Serum

Bewertung von Farbe und Trübung

Zellzahl:

Zählung von Leukozyten und Erythrozyten

Methode Zählk./ADVIA

Häufigkeit täglich Referenzbereich < 5/µl

Zytogramm

Methode Mikroskop Häufigkeit täglich Mo.-Fr. Referenzbereich siehe Befund

Gesamteiweiß

Methode Phot. Häufigkeit täglich Referenzbereich < 0,4 g/l

Albumin

Methode Phot. Häufigkeit täglich

Referenzbereich siehe Befund

Liquordiagnostik (Fortsetzung)

Material Liquor + Serum

Immunglobuline

Methode Neph. Häufigkeit täglich Mo.-Fr.

Referenzbereich

 IgA
 <</td>
 4
 mg/l

 IgG
 <</td>
 45
 mg/l

 IgM
 <</td>
 1
 mg/l

Oligoklonale Banden

Methode Elpho Häufigkeit bei Bedarf

Referenzbereich siehe Befundbericht

Glukose

Methode Phot. Häufigkeit täglich Referenzbereich 49 – 75 mg/dl

Laktat

Methode Phot. Häufigkeit täglich

Referenzbereich

Kinder < 15 Jahre 1,1 – 1,8 mmol/l Erwachsene < 50 Jahre 1,5 – 2,1 mmol/

> 50 Jahre 1,7-2,6 mmol/l

Liquordiagnostik (Fortsetzung)

Material Liquor + Serum

Chlorid

Methode ISE Häufigkeit täglich

Referenzbereich 110 – 130 mmol/l

Natrium

Methode ISE Häufigkeit täglich

Referenzbereich 125 – 145 mmol/l

Lithium

Methode AES (Atomemissions-

spektroskopie)

Material Serum Häufigkeit täglich

Referenzbereich 0,4 – 1,2 mmol/l

Lorazepam

Methode HPLC
Material Serum
Häufigkeit bei Bedarf
Referenzbereich 20 – 250 µg/l

Lp (a)

Siehe Lipoprotein a

LSD

Siehe Drogenscreening

Lupus Antikoagulans

Methode Koag.
Material Citratplasma
Häufigkeit bei Bedarf
Referenzbereich negativ

Luteinisierendes Hormon

Siehe LH

LWM-Heparin

Siehe Gerinnungsfaktor Xa

Lysodren

MethodeHPLCMaterialSerumHäufigkeitbei BedarfReferenzbereich14 – 20 μg/l

Lysozym

Methode Phot.

Material Serum

Häufigkeit bei Bedarf

Referenzbereich 3,0 – 9,0 mg/l

M

Magnesium im Plasma/Serum

Methode Phot.

Material Hep.-Plasma

Häufigkeit täglich

Referenzbereich

Erwachsene 0.75 - 1.05 mmol/I < 1 Jahr 0.45 - 1.0 Kinder mmol/I

Magnesium im Urin

Methode Phot. Material Urin* Häufigkeit täglich

Referenzbereich $0.5 - 10 \, \text{mmol/d}$

Frwachsene 0.03 - 0.18 mmol/ 24 h*kg

Kinder - 1 Tag

< 0.004 mmol/24h*ka < 1 Monat 0.003 - 0.04 mmol/ 24h*kg0.03 - 0.18 mmol/ 24 h*kg> 1 Monat

MAK

Siehe Autoantikörper gegen Schilddrüsen-Proteine

^{*24} Std-Sammelurin ohne Zusätze

α2-Makroglobulin (alpha 2)

Methode Neph.

Material Urin*

Häufigkeit bei Bedarf

Referenzbereich < 9,4 mg/l

*24 Std-Sammelurin ohne Zusätze

Malaria-Diagnostik

Schnelltest (qual. Antikörpernachweis)

Methode EIA
Material EDTA-Blut
Häufigkeit täglich
Referenzbereich negativ

Malaria-Direktnachweis

Dicker Tropfen Blutausstrich

Methode Mikr.
Material EDTA-Blut
Häufigkeit täglich

Maprotilin

Methode HPLC
Material Serum
Häufigkeit bei Bedarf
Referenzbereich 100 – 250 µg/l

Metanephrin/Normetanephrin im Plasma

Methode EIA
Material Serum
Häufigkeit bei Bedarf

Referenzbereich

Metanephrin < 90 pg/ml Normetanephrin < 180 pg/ml

Metanephrin im Urin

Siehe Katecholamine

Methadon

Siehe Drogenscreening

Methämoglobin im Blut

Material EDTA-Blut Häufigkeit täglich

Referenzbereich < 1,0 %

Methotrexat

Methode EMIT

Material Hep.-Plasma Häufigkeit täglich

Therapeutischer Bereich

(abhängig von der Zeit nach Infusionsbeginn)

Methylentetrahydrofolat-Reduktase

(MTHFR-677T-Mutation)
Siehe Molekulargenetische Untersuchungen

Metoclopramid-Test

Siehe Funktionsteste im Anhang

Mikroglobulin

Siehe alpha $1(\alpha 1)$ -Mikroglobulin beta2 ($\beta 2$)-Mikroglobulin

Mikrosomale Schilddrüsen-Antikörper

Siehe Autoantikörper gegen Schilddrüsen-Proteine

Mitochondrien

Siehe Autoantikörper gegen Mitochondrien

Molekulargenetische Untersuchungen

Methode PCR

Material EDTA-Blut Häufigkeit bei Bedarf

Referenzbereich

SNP-Diagnostik

α-1 Antitrypsin-Gen (S/Z) ACE-Gen (Ins./Del.) Aldose-Reductase (C-106T) APO E-Gen (E2, E3, E4) APO B-Gen (Cd 3500)

Molekulargenetische Untersuchungen

(Fortsetzung)

Methode Seq

Material EDTA-Blut Häufigkeit bei Bedarf

Referenzbereich

Angiotens. (M235T) CETP (B1/B2)

Faktor V (Leiden)

G-Protein-β3 (C825T)

Hepatische Lipase (C514T) HFE-Gen (H63D, C282Y)

Interleukin-6 (C174G)

Kir6.2 (E23K)

Kollagen Typ1α (G/T SP1)

Laktase (C13910T, G22018A)

Lipoprotein-Lipase (D9N, S447X)

MTHFR (677T)

Östrogen Rezeptor α (Pvull/Xbal)

PAI-1 (4G/5G)

Prothrombin (G20210A)

PPAR-y (Pro12Ala)

Sulf.-Harnstoff Rezeptor (C/T Exon 22) TNF- α (G308A) Vit.-D Rezeptor (Bsml)

Sequenzierungen

Glykokinase-Gen (MODY-2) Glykokinase-Gen (MODY-3) Melancortin-4 Rezeptor (Adipositas Grad III)

Mononukleose-Schnelltest

Methode Aggr

Material Serum/EDTA-Blut

Häufigkeit täglich Referenzbereich negativ

Morphinderivate

Siehe Drogenscreening

Mycophenolat-Mofetil

(Bestimmt wird der in vivo freigesetzte aktive Metabolit MPA)

Methode EMIT
Material EDTA-Blut
Häufigkeit täglich

Referenzbereich 1,5-4,5 mg/l

Myoglobin im Serum

Methode EIA Material Serum Häufigkeit täglich

Referenzbereich

Männer < 114 $\mu g/l$ Frauen < 96 $\mu g/l$

Myoglobin im Urin

Methode EIA Material Urin Häufigkeit täglich

Referenzbereich $< 5.0 \mu g/l$

N

Natrium im Dialysat

Methode ISE Material Dialysat Häufigkeit täglich

Referenzbereich 120 – 160 mmol/l

Natrium im Plasma

Methode ISE

Material Hep.-Plasma

Häufigkeit täglich

Referenzbereich

Erwachsene 135 - 145 mmol/l Kinder < 1 Jahr 131 - 145 mmol/l

Natrium im Urin

Methode ISE
Material Urin*
Häufigkeit täglich

Referenzbereich 120 - 260 mmol/24h Erwachsene 1,0 - 3,8 mmol/24h*kg Kinder < 6 Monate 0,2 - 1,3 mmol/24h*kg

*24 Std.-Sammelurin ohne Zusätze

Netilmycin

Methode EMIT

Material Hep.-Plasma* Häufigkeit täglich Therapeutischer Bereich 5 – 12 mg/l

*Abnahme 30 Min.. nach i.v., 1h nach i.m.-Gabe

Nitrazepam

Methode HPLC
Material Serum
Häufigkeit bei Bedarf
Therapeutischer Bereich 40 – 100 µg/
Hinweis: Abnahme vor der nächsten Dosis

Noradrenalin

Siehe Katecholamine

Normetanephrine im Plasma

Siehe Metanephrin

Normetanephrine im Urin

Siehe Katecholamine

Nortryptilin

Methode HPI C Material Serum Häufigkeit bei Bedarf Therapeutischer Bereich $70 - 170 \mu g/l$ Abnahme 10- 15 h nach letzter Dosis

NSE (Neuronen-spezifische Enolase)

Methode **FCLIA** Material Serum Häufigkeit täglich

Referenzbereich

Erwachsene (19)17 μg/l Kinder < 1 Jahr 31 (33)μg/l <

1 - 5 Jahre 25 μg/l 5 – 8 Jahre 22 < μg/l > 8 Jahre 17 μg/l

NT-Pro-BNP

Methode CLIA

Material Hep.-Plasma

Häufigkeit täglich

Referenzbereich

< 70 Jahre his 125 ng/l > 71 Jahre bis 450 ng/l

O

Olanzapin

Methode HPLC
Material Serum
Häufigkeit bei Bedarf
Therapeutischer Bereich 20 – 100 µg/l
Hinweis: Abnahme vor der nächsten Dosis

Oligoklonale Banden

Siehe Isoelektrische Fokusierung

Opiate

Siehe Drogenscreening

Orgaran (Danaproid)

Siehe Gerinnungsfaktor Xa

Orosomucoid

Siehe saures alpha1-Glykoprotein

Osmolalität im Serum

Methode Gefrierpunkterniedrigung

Material Serum Häufigkeit täglich

Referenzbereich 281 – 297 mosm/ kg H₂O

Osmotische Resistenz der Erythrozyten

Methode visueller Nachweis einer Hämo-

lyse

Material Heparin-Blut* (ohne Kügelchen)

Häufigkeit bei Bedarf

Referenzbereich

Beginn der Hämolyse 0,46 - 0,44 % NaCl vollständige Hämolyse 0,32 - 0,30 % NaCl

* Mindestprobenmenge 7,5 ml

Osteocalcin Methode

Material				Serum				
Häufigkeit			bei Bedarf					
Referenzbereich								
Kinder		<	10	Jahre	10	-	50	ng/ml
	10	-	15	Jahre	10	-	100	ng/ml
Männer		<	20	Jahre	24	-	70	ng/ml
	20	-	30	Jahre	14	-	42	ng/ml
		>	30	Jahre	14	-	46	ng/ml
Frauen		<	20	Jahre	10	-	50	ng/ml
	20	-	30	Jahre	11	-	43	ng/ml

Jahre 15

30

ΙIΑ

ng/ml

46

Östradiol (E2)

Methode Material Häufigkeit Referenzbereich Kinder < 11 Jahre	LIA Serum täglich				
Tandor VIII danie	m w	7,0 7,0	-	10,0 13,0	pg/ml pg/ml
Männer		10,0	-	45,0	pg/ml
Frauen vor Ovulation postmonp.		40,0 150,0 4,0	- - -	250,0 350,0 30,0	pg/ml pg/ml pg/ml

Oxalsäure (Oxalat) im Urin

Methode Enzym Material Urin*

Häufigkeit bei Bedarf Referenzbereich 7,0 – 44,0 mg/d

*24 Std. Sammelurin ohne Zusätze.

Hinweis: Für Untersuchungen im Spontanurin bestehen

keine Referenzwerte

Oxazepam

Methode HPLC

Material Serum

Häufigkeit bei Bedarf

Therapeutischer Bereich 200 – 1500 μg/l

Hinweis: Abnahme vor der nächsten Dosis

Oxcarbazepin (Monohydroxy-Carbazepin)

Methode HPLC
Material Serum
Häufigkeit bei Bedarf
Therapeutischer Bereich 10 – 35 mg/l
Hinweis: Abnahme vor der nächsten Dosis

Pankreas Amylase

Siehe Amylase-Isoenzyme

Pankreas Elastase

Siehe Elastase

Paracetamol

Methode **FMIT**

Material Hep.-Plasma Häufigkeit täglich Therapeutischer Bereich - 30 mg/l

Parathormon intakt (Sequenz 1-84)

Methode ΙIΑ

Material Hep.-Plasma Häufigkeit täglich

Referenzbereich 1,3 - 7,6 pmol/l

Parathormon related Peptide (PTHrP) *

Methode IRMA

Material EDTA-Plasma*, tiefgefroren

Häufigkeit nach Bedarf
Referenzbereich < 1,3 pmol/l
Plasma innerhalb 1 Std gewinnen und tieffrieren
*Fremdleistung: Parameter wird versendet

Partielle Thromboplastinzeit aktiviert (aPTT)

Methode Kaag.

Material Citratplasma Häufigkeit täglich

Referenzbereich

Kinder < 1 Jahre < 45 sec Erwachsene < 35 sec

PCA 3 (Molekulargenetische Untersuchung)

Methode PCR
Material Urin*
Häufigkeit bei Bedarf
Referenzbereich < 35 (Score)

^{*}Spontanurin; spezielle Urin-Transportröhrchen im Labor anfordern mit der Anleitung zur Probengewinnung und zum Probenversandt.

PFA- 100

Methode Durchfluss-Aggr.
Material Citratplasma*

Häufigkeit täglich

Referenzbereich

Collagen/Epinephrine 84 - 160 sec Collagen/ADP 68 - 121 sec

*Blutentnahme in Monovetten mit gepufferter Citratlösung.

Monovetten im Labor anfordern

Phenobarbital

Methode EMIT

Material Hep.-Plasma

Häufigkeit täglich

Therapeutischer Bereich 10 - 40 mg/l Kinder < 12 Monate 20 - 40 mg/l

Hinweis: Abnahme vor nächster Dosis

Phenytoin

Methode EMIT

Material Hep.-Plasma

Häufigkeit täglich

Therapeutischer Bereich 10 - 20 mg/l Kinder < 12 Monate 5 - 15 mg/l

Hinweis: Abnahme vor nächster Dosis

PHI

Siehe Phosphohexose-Isomerase

Phosphat im Dialysat

Methode Phot. Material Dialysat Häufigkeit täglich

Referenzbereich

Phosphat im Punktat

Methode Phot. Material Punktat Häufigkeit täglich

Referenzbereich NN mmol/I

Phosphat im Plasma

Methode Phot. Material Hep.-Plasma

Häufiakeit täglich

Referenzbereich

Erwachsene 8,0 - 1,5 mmol/l Kinder Tage 1.6 3.1 < 30 mmol/l

Jahr 1,3 2,6 1 mmol/l < 16 Jahre 1.1 2.0 < mmol/l

Phosphat im Urin

Methode Material Häufigkeit				Phot. Urin täglic			
Referenzbei	reich			10	-	35	mmol/l
				10	-	35	mmol/24 Std.
				0,5	-	0,65	mmol/24 Std/kg KG3
				0,2	-	0,8	mg/mg Kreatinin
Kinder	<	2	Jahr	0,3	-	5,2	mg/mg Kreatinin
		2	Jahre	0,3	-	4,0	mg/mg Kreatinin
		3	Jahre	0,3	-	3,2	mg/mg Kreatinin
4	-	5	Jahre	0,3	-	2,2	mg/mg Kreatinin
6	-	7	Jahre	0,3	-	1,5	mg/mg Kreatinin
8	-	10	Jahre	0,3	-	1,0	mg/mg Kreatinin
11	-	14	Jahre	0,2	-	0,9	mg/mg Kreatinin
1.1	_	14	Janie	0,2	_	0,3	mg/mg Meaumin

^{*} Körpergewicht

Phosphatase

Siehe Alkalische Phosphatase

Plasma-Renin-Aktivität

Methode CLIA

Material EDTA-Plasma Häufigkeit wöchentlich

Referenzbereich

Erwachsene basal 2,8 - 26,7 mU/l Orthostasetest in Ruhe 5,0 - 26,7 mU/l

Plasma-Thrombinzeit (TZ)

Methode Koag.
Material Citratplasma
Häufigkeit täglich

Referenzbereich

Erwachsene < 22 sec. Kinder < 1 Monat < 29 sec.

Plasminogen (Aktivität)

Methode Phot.

Material Citratplasma Häufigkeit bei Bedarf

Referenzbereich 80 – 120 %

Plättchenaggregation

Methode Aggr.**
Material Citratblut*
Häufigkeit bei Bedarf
Referenzbereich 70 – 120 %

 * Mindestprobenmenge beträgt 20 ml Citratblut
 ** Induziert durch Startreagenzien: Ristocetin, Kollagen, ADP, Arachidonsäure, Epinephrine

Porphobilinogen im Urin (quantitativ)

Methode Phot.

Material Urin*

Häufigkeit bei Bedarf

Referenzbereich < 2,0 mg/l

^{*24} Std-Urin ohne Zusätze dunkel und kühl aufbewahren.

Porphyrine (fraktioniert) im Urin

Methode	HPLC
Material	Urin*
Häufigkeit	bei Bedarf

Referenzbereich

1011		
Uro	< 33	μg/24h
Hexa	- 7	μg/24h
Hepta	- 10	μg/24h
Penta	< 5	μg/24h
Kopro	< 120	μg/24h
Kopro I	17 - 31	%
Konro III	69 - 83	%

^{*24} Std-Urin ohne Zusätze dunkel und kühl aufbewahren.

Präalbumin (Transthyretin)

Methode Turbid.

Material Serum

Häufigkeit bei Bedarf

Referenzbereich 0,1-0,4 g/l

Primidon

Methode EMIT

Material Hep.-Plasma Häufigkeit täglich

Referenzbereich 5-15 mg/l

Hinweis: Abnahme vor nächster Dosis

Pro-BNP (Pro-Brain Natriuretic Peptide)

Siehe NT-Pro-BNP

Procalcitonin ST (semiquantitativ)

Methode ILMA
Material Hep.-Plasma
Häufigkeit täglich
Referenzbereich < 0,5 μg/l

Procalcitonin (sensitiv)

Methode			TRACE		
Material		Serum / HepPlasma			
Häufigkeit			täglich MoFr.		
Referenzbereich	Erwachsene		< 0,05 ng/ml		
Neugeborene					
	•	T	04/		

< 2 Tage < 21 ng/ml 2 Tage < 2 ng/ml</p>

Progesteron im Plasma

Methode LIA

Material Hep.-Plasma Häufigkeit täglich

Referenzbereich

 Männer

 0,4
 ng/ml

 Frauen
 0,2
 2,0
 ng/ml

Prograf®

Siehe FK 506

Proinsulin *

Methode EIA

Material Nüchtern-EDTA-Plasma,

tiefgefroren

Häufigkeit bei Bedarf
Referenzbereich 0,7 - 11,0 pmol/l
*Fremdleistung: Parameter wird versendet

Prolaktin

Methode LIA

Material Hep.-Plasma

Häufigkeit täglich

Referenzbereich

Männer 43 - 375 mU/l Frauen 60 - 620 mU/l

Prostata-spezifisches Antigen

Siehe PSA

Protein

Siehe Fiweiß

Protein C-Aktivität

Methode Phot.

Material Citratplasma

Häufigkeit täglich

Referenzbereich

Erwachsene 60 - 120 % bis 2 Monate Kinder 17 50 %

Protein S-Aktivität

Methode Phot.

Material Citratplasma täglich

Häufigkeit

Referenzbereich

Erwachsene % 60 - 120 Kinder bis 2 Monate 12 - 60 %

Prothrombin 20210-Mutation

Siehe molekulargenetische Untersuchungen

PSA (Prostata-spezifisches Antigen)

Methode CLIA
Material Serum
Häufigkeit täglich Mo.-Fr.
Referenzbereich < 4.0 μg/l

Freies PSA

Methode CLIA Material Serum

Häufigkeit täglich Mo.-Fr.

PTH

Siehe Parathormon

Pyridoxal, Pyridoxalphosphat

Siehe Vitamin B6

Quetiapin

Methode HPI C Material Serum bei Bedarf Häufigkeit Therapeutischer Bereich $70 - 170 \mu g/l$ Hinweis: Abnahme vor der nächsten Dosis

Quicktest (Thormboplastinzeit)

Methode Koag. Material Citratplasma täglich Häufigkeit

Referenzbereich

Erwachsene 70 - 125 % < 1 Monat Kinder 40 -60 %

INR

Um unter Cumarin-Therapie eine Vergleichbarkeit des Quickwertes zu gewährleisten, der abhängig ist vom verwendeten Thromboplastin und der Bestimmungs-methode bzw. des eingesetzten Automaten, wird der Quickwert bei Anforderung automatisch auch als INR ausgegeben.

Referenzbereich 0.9 - 1.2

R

Renin (aktives Renin)

Methode ILMA

Material EDTA-Plasma Häufigkeit bei Bedarf Referenzbereich 2,8 – 26,7 mU/l

Reptilase-Zeit

Methode koag.

Material Citratplasma Häufigkeit bei Bedarf Referenzbereich 16 – 22 sec

Retikulozyten

Siehe Blutbild

RET Proto-Onkogen (MEN-2)

Siehe molekulargenetische Untersuchungen

Rheumafaktor (Latex)

Methode Immunturbidimetrie

Material Serum Häufigkeit täglich Referenzbereich < 25 IU/ml

Rheumafaktor (Waaler-Rose)

Methode Aggl.

Material Serum

Häufigkeit täglich

Referenzbereich < 30 IU/ml

Ristocetin-Cofactor

Methode Aggr.

Material Citratplasma Häufigkeit bei Bedarf

RNP und Ribonukleoproteine

Siehe Auto-Antikörper gegen ENA

Risperidon / Hydroxyrisperidon (9-OH-Risperidon) *

Methode LC/MSMS
Material Serum/Plasma
Häufigkeit bei Bedarf
Therapeutischer Bereich** 10 – 100 μg/l
*Fremdleistung: Parameter wird versendet

^{**} Der therapeutische Bereich ergibt sich aus der Summe von Muttersubstanz und aktivem Metabolit, d. h. Risperidon plus 9-OH-Risperidon

S

S-100 im Serum

Methode ECLIA
Material Serum
Häufigkeit täglich
Referenzbereich < 0,11 µg/l

Salicylsäure (Salicylat)

Methode EMIT

Material Hep.-Plasma Häufigkeit täglich Referenzbereich < 180 mg/l

Saures a1-Glykoprotein (Orosomucoid)

Methode Immunturbidimetrie

Material Serum Häufigkeit bei Bedarf Referenzbereich 0.5 - 1.2 IU/I

SCC (Squamous Cell Carcinoma Ag)

Methode MEIA
Material Serum
Häufigkeit täglich
Referenzbereich < 2,5 µg/l

sCD25

siehe sIL 2R (löslicher Interleukin 2 Rezeptor)

Schilddrüsen-Autoantikörper

Siehe Autoantikörper gegen: Thyreoglobulin (Anti-TG) Mikrosome der Schilddrüse (Anti-TPO/ MACK) TSH-Rezeptor (TRAK)

ScI-70

Siehe Autoantikörper gegen ENA

Selen im Serum

Methode AAS
Material Serum
Häufigkeit bei Bedarf

Referenzbereich 0,75 - 1,80 µmol/l

Serotonin

Methode HPLC
Material Serum
Häufigkeit bei Bedarf

Referenzbereich < 2 µmol/l

SHBG (Sex-Hormone-Binding Globulin)

Methode CLIA Material Serum

Häufigkeit täglich: Mo.-Fr.

Referenzbereich

Frauen 20 - 190 nmol/l Männer 10 - 72 nmol/l

Sideroblasten

Siehe unter Knochenmark

Sirolimus (Rapamune®)

Methode CMIA
Material EDTA-Blut
Häufigkeit täglich

Referenzbereich $4,0-20,0 \mu g/l$

SM-Antigen

Siehe Auto-Antiköprer gegen ENA

SmC (Somatomedin C)

Siehe IGF-1

Somatotropes Hormon

Siehe STH

Speichel-Amylase-Isoenzym

Siehe Amylase-Isoenzyme

Squamous Cell Carcinome Antigen

Siehe SCC

SSA und SSB

Siehe Autoantikörper gegen ENA

STH (Somatotropes Hormon)

Methode LIA
Material Serum
Häufigkeit bei Bedarf

Referenzbereich ≤ 3 ng/ml

Stuhlfette

Siehe Fette im Stuhl

Styrol-Metabolite im Urin

Methode HPLC

Material Urin (Spontanurin)*

Häufigkeit Bei Bedarf

Referenzbereich

Mandelsäure +

Phenylglyoxylsäure < 600 mg/g Kreatinin

Sultiam

MethodeHPLCMaterialSerumHäufigkeitbei BedarfReferenzbereich0,5 - 12,5 mg/l

^{*}Der Spontanurin ist am Ende der Arbeitswoche oder der Arbeitsschicht zu erbringen.

T

Tacrolimus

siehe FK 506

Testosteron, freies

Siehe freier Androgen-Index (FAI)

Testosteron nach Chromatographie

Methode	RIA nach recovery- korrigierter Extraction						
Material		Serum/EDTA-plasma					
Häufigkeit		wöche	wöchentlich '				
Referenzbereich							
Männer		250	-	1000	ng/dl		
Frauen		20	-	80	ng/dl		
Kinder	1 – 6 Mo	10	-	400	ng/dl		
(männlich)							
Kinder	präpupertär	2	-	20	ng/dl		
Kinder	10 – 16	10	-	950	ng/dl		
(männlich)	Jahre				_		
Neugeborene	(männlich)		<	400	ng/dl		
Frühgeborene		<	200	ng/dl			
Neugeborene		<	65	ng/dl			
Frühgeborene	(weiblich)		<	22	ng/dl		

Testosteron, gesamt

Methode CLIA

Material Hep.-Plasma

Häufigkeit täglich

Referenzbereich

Frauen 0,03 - 0,6 ng/ml Männer 2,0 - 7,0 ng/ml

Tetrahydroaldosteron

Methode RIA nach recovery-

korrigierter Chromatographie

Material Urin*

Häufigkeit wöchentlich

Referenzbereich $10 - 92 \mu g/24 \text{ Std}$

*24 Stunden-Sammelurin ohne Zusätze

Tetrahydrocortisol

Methode RIA nach Glucuronidase

Material Urin* Häufigkeit täglich

Referenzbereich**

Erwachsene 0,5 - 3,5 mg/24 Std Kinder 4 – 5 Jahre 0,2 - 1,5 mg/24 Std 6 – 10 Jahre 0,2 - 2,5 mg/24 Std

*24 Stunden-Sammelurin ohne Zusätze

^{**}Körperoberflächen-bezogene Werte auf Anfrage

Tetrahydrocortison

Methode BIA nach Glucuronidase

Material Urin* Häufigkeit täglich

Referenzbereich**

Erwachsene 0,5 - 5,5 mg/24 Std Kinder 4 – 5 Jahre 0,3 - 2,0 mg/24 Std 6 – 10 Jahre 0,3 - 4,0 mg/24 Std

*24 Stunden-Sammelurin ohne Zusätze

Theophillin

Methode EMIT

Material Hep.-Plasma Häufigkeit täglich

Referenzbereich

Kinder bis 1 Jahr 4,0 - 12,0 mg/l Erwachsene 10,0 - 20,0 mg/l

Thrombozyten

Siehe Blutbild

^{**}Körperoberflächen-bezogene Werte auf Anfrage

Thrombozytenfunktionsteste

Siehe Plättchenaggregation

Thyreoglobulin

Methode Immunfluoreszenztest

Material Serum

Häufigkeit täglich Mo.-Fr. Referenzbereich < 2 ng/ml

Thyreoglobulin-Autoantikörper

Siehe Autoantikörper gegen Schilddrüsen-Proteine

Thyreoidea stimulierendes Hormon

Siehe TSH

Thyroxin

Siehe fT4 (freies Thyroxin)

TIBC

Siehe Eisenbindungskapazität (totale)

Tobramycin

Methode EMIT

Material Hep.-Plasma

Häufigkeit täglich

Referenzbereich

vor Gabe (Talspiegel) 0,5 - 2,0 mg/l

Tranquillizer/Benzodiazepine

Siehe Drogenscreening

Transferrin

Methode turb.

Material Hep.-Plasma

Häufigkeit täglich

Referenzbereich

Erwachsene
Kinder
bis 7 Tage
bis 3 Monate
3 - 12 Monate
2,0 - 3,6 g/l
0,92 - 2,1 g/l
1,51 - 3,53 g/l
2,35 - 4,03 g/l

3 - 12 Monate 2,35 - 4,03 g/l 1 - 4 Jahre 2,35 - 4,03 g/l

Transferrinrezeptor löslicher (sTfR)

Methode ECLIA Material Serum Häufigkeit täglich

Referenzbereich

 Männer
 2,2
 5,0
 mg/l

 Frauen
 1,9
 4,4
 mg/l

Transferrinsättigung

Wird aus der Eisenkonzentration und dem Transferringehalt der

Patentenprobe (Hep.-Plasma) berechnet.

Referenzbereich 16 - 45 %

Tricyclische Antidepressiva

Siehe Drogenscreening

Triglyceride

Methode enzym.

Material Hep.-Plasma

Häufigkeit täglich

Referenzbereich

Erwachsen < 150 mg/dl Kinder < 1 Monat 10 - 230 mg/dl

> < 1 Jahr 40 - 230 mg/dl < 19 Jahre 25 - 180 mg/dl

Trijodthyronin

Siehe fT3

Troponin I

Methode ECLIA
Material Hep.-Plasma
Häufigkeit täglich
Referenzbereich < 0,6 μg/l

Troponin T (cTNT) hochsensitiv

Methode ECLIA

Material Hep.-Plasma / Serum

Häufigkeit täglich Referenzbereich < 50 pg/ml

Tryptase

Methode Immunocap Material Serum Häufigkeit täglich

Referenzbereich < 11,4 µg/l (95. Perzentile)

TSH (Thyreoidea stimulierendes Hormon)

Methode CLIA

Material Hep.-Plasma

Häufigkeit täglich

Referenzbereich 0,4 - 4,0 mU/l Kinder < 1 Monat < 20 mU/l

TSH-Rezeptor-Autoantikörper

Siehe Autoantiköper gegen Schilddrüsenproteine

U

Uroporphyrin

Siehe Porphyrine

Valproinsäure

FMIT Methode

Material Hep.-Plasma täglich

Häufigkeit

Therapeutischer Bereich 50 -100 mg/l

Vancomycin

Methode **FMIT**

Material Hep.-Plasma

Häufigkeit täglich

Therapeutischer Bereich

Talspiegel (vor Gabe) 5.0 - 10.0 mg/l Peak-Spiegel (nach Gabe) 20.0 -40.0 mg/l Kinder < 1 Jahr 5.0 -10.0 mg/l

Vanillinmandelsäure im Urin

Siehe Katecholamine im Urin

Vitamin A (Retinol)

Methode **HPLC** Material Serum

Häufigkeit bei Bedarf

Referenzbereich 1.05 - 2.80 umol/l

Vitamin B1 (Thiaminpyrophosphat)

Methode HPLC
Material EDTA-Blut*
Häufigkeit bei Bedarf

Referenzbereich 71 - 185 nmol/l

*Proben nach Abnahme sofort gekühlt (0°C) und lichtgeschützt ins Labor bringen.

Vitamin B2 (FAD)

Methode HPLC
Material EDTA-Blut*
Häufigkeit bei Bedarf
Referenzbereich 174 - 471 nmol/l

*Proben nach Abnahme sofort gekühlt (0°C) und lichtgeschützt ins Labor bringen.

Vitamin B6 (Pyridoxalphospat)

Methode HPLC
Material EDTA-Blut*
Häufigkeit bei Bedarf
Referenzbereich 15 - 73 nmol/l

*Proben nach Abnahme sofort gekühlt (0°C) und lichtgeschützt ins Labor bringen.

Vitamin B12

Methode CLIA Material Serum

Häufigkeit täglich Mo.-Fr. Referenzbereich 160 - 670 pmol/l

Vitamin D, 25(OH)D3 (= 25-Hydroxy-Vitamin D)

Methode CLIA Material Serum

Häufigkeit täglich: Mo.-Fr. Referenzbereich 6,3 - 46,4 ng/ml

Vitamin E (Tocopherol)

Methode HPLC
Material Serum
Häufigkeit bei Bedarf
Referenzbereich 12 - 42 µmol/l

Von Willebrand-Faktor (Konzentration)

Methode La.-Aggl.

Material Citratplasma

Häufigkeit täglich

Referenzbereich 70 - 120 %

Wachstumshormon

Siehe STH

Waaler-Rose-Test (IgM-Rheuma-Faktor)

X, **Y**, **Z**

Zink im Blut

Methode AAS (Flamme)
Material Serum
Häufigkeit bei Bedarf
Referenzbereich 9 - 18 µmol/l

Zink im Urin

Methode AAS (Flamme)
Material Urin
Häufigkeit bei Bedarf
Referenzbereich 2,8 - 13,0 µmol/l
2,3 - 18,4 µmol/24h

Anhang 1 Allergene

Ig E gesamt*

.g – good							
Methode				UniCap			
Material				Serum			
Häufigkeit				bei Bedarf			
Referenzber	eich	1					
Erwachs	sene	>	16 Jal	hre	≤	100	KU/I
Kinder							
	0	-	6	Monate	<	2,75	KU/I
	6	-	24	Monate	<	3,75	KU/I
	2	-	4	Jahre	<	16,00	KU/I
	5	-	7	Jahre	<	26,20	KU/I
	8	-	11	Jahre	<	34,60	KU/I
	12	_	16	.lahre	_	26.30	KH/I

^{*}Wird im Rahmen der Allergietestung mitbestimmt.

Ig E Allergen-spezifisch

Methode	Uni	Cap			
Material	Seri	um.			
Häufigkeit	täglich Mo - Fr				
Referenzbereich	sieh	e Befund	dberio	ht	
CAP-Klasse					
0	negativ		<	0,35	KU/I
1	positiv	0,35	-	0,70	KU/I
2	positiv	0,70	-	3,50	KU/I
3	positiv	3,50	-	17,50	KU/I
4	positiv	17,50	-	50,00	KU/I
5	positiv	50,00	-	100,00	KU/I
6	nositiv		>	100.00	KU/I

Allergene:

sx1 Phadiatop

Inhalativer Allergiesuchtest:

Lieschgras Roggen

Birke

Beifuß

Derm. pteron

Katzenschuppen

Hundeschuppen

Cladospor. herb

fx5 Nahrungsmittel-Screen:

Hühnereiweiß

Milcheiweiß

Dorsch

Weizenmehl

Erdnuss

Soja

rx1 Saisonal Screen:

Lieschgras

Beifuß

Spitzwegerich

Glaskraut

Birke

rx2 Perennial Screen:

Derm. farinae

Katzenschuppen

Pferdeepithelien

Alternaria alt.

Hundeschuppen

gx1 Gräser, Frühblühermischung:

Lieschgras	g6
Knäuelgras	g3
Lieschgraspollen rPhl p1	g205
Lieschgraspollen rPhl p5	g215
rPhl p7 (recombinant)	g210
rPhl p12 (recombinant)	g212
rPhl p1, rPhl p5	g213
rPhl p7.rPhl 12	a214

gx4 Gräser, Spätblühermischung:

Roggen	g12
Gerste	g201
Hafer	g14
Lolch (Weidegras)	g5
Mais	g202
Weizen	g15

gx6 Gräsermischung 3:

Hundszahngras

Lolch

Mohrenhirse

Trespe

Wolliges Honiggras

Bahiagras

tx5 Bäume, Frühblühmischung:

Erle	t2
Hasel	t4
Pappel	t14
Salweide	t12
Ulme	t8

tx6 Bäume, Spätblühmischung:

Birke	t3
Buche	t5
Eiche	t7
Ahorn	t1
Walnussbaum	t10
Platane	t11
Esche	t15
Linde	t208
Hauptall. v. Birkenp. rBet v1 (re-	t215
combinat)	1010
Profilin a. Birkenp. rBet v2	t216
Cabd. All. a. Birkenp. rBet v4	t220
NbAll. v. Birkenp. rBet v2, rBet v4	t221
(recombinat)	

pax3 Pollen, Schimmelpilz-Mischung:

Aspergillus fumigatus

Alt. alt., Roggen Weizen

mx2 Schimmelpilz-Mischung:

Committeeping misoriang.	
Penicillium notatum	m1
Aspergillus niger	m207
Botrytis cinerea	m7
Mucor racemosus	m4
Aspergillus fumigatus	m3
Cladosporium herbarum	m2
Penicillium frequetans	m209
Candida albicans	m5
Alternaria alternata/tenuis	m6
Helminthosporium halodes	m8
Fusarium moniliforme	m9
Chaetomium globosum	m208
Aspergillus fumigatus rAsp f1	m218
(recombinant)	111210
Aspergillus fumigatus rAsp f2	m219
(recombinant)	111213
Aspergillus fumigatus rAsp f3	m220
(recombinant)	111220
Aspergillus fumigatus rAsp f4	m221
(recombinant)	111221
Aspergillus fumigatus rAsp f6	m222
(recombinant)	111222

wx3 Kräutermischung.

Beifuß	w6
Spitzwegerich	w9
Brennessel	w20
Kamille	w206
Raps	w203

hx2 Hausstaubmilben-Mischung:

Dermatophag. pter	d1
Dermatophag. fari.,	d2
Dermatophag. mic.,	d3
Hausstaub/Greer Labs.,	h1
Küchenschabe	i6
Hausstaub/Hollister-Steer Labs	h2

Vorratsmilben:

Acarus siro	d70
Lepidoglyphus destructor	d71
Glycophagus domesticus	d73
Euroglyphus maynei	d74
Thyrophagus putrescentiae	d72

ex1 Epithelienmischung:

Katzenepithelien	e1
Hundeschuppen	e5
Pferdeepithelien	e3
Rinderepithelien	e4
Schafepithelien	e81

ex70 Nagermischung:

Mäuseserumprotein	e76
Mäuseurinprotein	e72
Rattenserumprotein	e75
Rattenurinprotein	e74
Katzenserumalbumin	e220
Rattenepithelien	e73
Mäuseepithelien	e71
Kaninchenepithelien	e82
Meerschweinchen	e6
Goldhamsterepithelien	e84

ex71 Federmischung:

Entenfedern	e86
Gänsefedern	e70
Hühnerfedern	e85

ex72 Käfigvögel-Mischung:

Kanarienvogelfedern	e201
Wellensittichfedern	e78
Wellensittichkot	e77

fx7 Nahrungsmittel-Mischung 1:

Tomate Bäckerhefe Knoblauch Zwiebel Sellerie

fx9 Nahrungsmittel-Mischung 3:

Mandel Kiwi Melone Banane Weintraube

fx11 Nahrungsmittel-Mischung 5:

Mais Erbse Weiße Bohne Broccoli Karotte

fx20 Nahrungsmittel-Mischung 9:

Weizenmehl Roggenmehl Gerstenmehl Reis

fx22 Nuss-Mischung:

Pekannuss Cashewnuss Pistazie Walnuss

fx1 Nuss-Mischung:

Erdnuss	f13
Haselnuss	f17
Walnuss	f256
Mandel	f20
Kokosnuss	f36
Paranuss	f18

fx2 Meeresfrüchte-Mischung:

Dorsch (Kabeljau)	f3
Garnele	f24
Thunfisch	f40
Lachs	f41
Miesmuschel	f37
Krabbe	f23

fx2 Fisch-Mischung:

1205
f206
f254
f3

fx3 Getreide-Mischung:

Gerstenmehl	f6
Weizenmehl	f4
Roggenmehl	f5
Hafermehl	f7
Maismehl	f8
Sesamschrot	f10
Buchweizenmehl	f11
Reismehl	f9

fx13 Gemüse-Mischung1:

Erbse Weiße Bohne Karotte Kartoffel

fx14 Gemüse-Mischung 2:

Tomate Spinat Kohl Paprika

Gemüse

Kartoffel	f35
Tomate	f25
Karotte	f31
Blumenkohl	f291
Champignon	f212
Fenchel, frisch	f276
Griechischer Fenchel	f305
Gurke	f244
Zwiebel	f48
Weiße Bohne	f15
Erbse	f12
Runkelrübe/Rote Beete	f319
Sellerie	f85
Knoblauch	f47
Sojabohne	f14

Milchprodukte:

Milcheiweiß	f2
Kasein (hitzestabil)	f78
Ziegenmilch	f300
Beta-Lactoglobulin	f77
Alpha-Lactalbumin	f76
Schimmelkäse	f82

Hühnerei:

Hühnereiweiß	f1
Eigelb	f75

fx21 Obstmischung 4:

Kiwi

Melone Banane

Pfirsich

Ananas

Obst:

Kiwi	f84
grüner Apfel	f49
Avocado	f96
Birne (Pyrus communis),	f94
Erdbeere	f44
Banane	f92
Pfirsich	f95
Ananas	f210
Brombeere	f211
Kirsche	f242
Mango	f91
Pflaume	f255
Weintraube	f259
Mandarine	f302
Aprikose	f237
Feige (frisch)	f328

Zitrusfrüchte:

Orange	f33
Zitrone	f208
Grapefruit	f209

fx73 Fleisch-Mischung:

f26
f27
f88
f83

fx70 Gewürz-Mischung 1:

Estragon Thymian Majoran Liebstöckel

fx71 Gewürz-Mischung 2:

Kümmel Muskatblüte Kardamon Gewürznelke

fx71 Gewürz-Mischung 3:

Fenchelsamen Basilikum Ingwer Anis

Gewürze:

Curry	f281
Muskatnuss	f282
Pfeffer, schwarz	f280
Anis	f271
Paprika	f218
Kümmel	f265
Chillipfeffer	f279
Pfeffer, grün	f263
Vanille	f234
Zimt	f220
Fenchelsamen	f219

Berufsallergene:

Ethylenoxid	k78
Alpha-Amylase	k87
Ficus spp.,	k81
Formaldeh./Formalin	k80
Isozyanat TDI	k75
Isozyanat MDI	k76
Isozyanat HDI	k77
Bromelin	k202
Papain	k201
Latex	k82

Arzneimittel:

Penicilloyl G	c1
Penicilloyl V	c2
Ampicilloyl	c5
Amoxicilloyl	c6
Cephaclor	c7

Sonstige Allergene:

Bäckerhefe f4	15 93
	3.3
Kakao f9	,,
Gummi arabicum f2	297
Honig f2	247
Hopfen (ganze Frucht) f3	324
Johannisbrot f2	296
Kürbissamen f2	226
Malz f9	90
Mohnsamen f2	224
Rapssamen f3	316
Senf f8	39
Tee f2	222
Tragant f2	298
Johannisbrot f2	296
Kürbissamen f2	226

Insekten:

Bienengift	i1
Wespengift	i3
Feuerameise	i70
Gelbwespe	i5
Pferdefliege	i201
Rinderbremse	i204
Stechmücke	i71
Hornissengift (Europa)	i75

Anhang 2

Endokrinologische Funktionsteste

ACTH-Kurztest

Patient nicht nüchtern!

Blutentnahme: 3 Serummonovetten (weiß/braun) zur Cortisolbestimmung beschriften mit 0, 30, 60 Min., Datum auf dem Formular für endokrinologische Funktionsteste bei "ACTH-Test" die Taktmarke für Cortisol mit weichem Bleistift markieren und die Monovetten mit den entsprechenden Serum-Barcode-Ftiketten bekleben.

Ablauf:

Blutentnahme 1 Serummonovette beschriften mit 0 Min. und bekleben mit dem Barcode für 1. Abnahme

code fur 1. Abnanme

30 Min. Blutentnahme 1 Serummonovette beschrif-

ten mit 30 Min. und bekleben mit dem

Barcode für 2. Abnahme

60 Min. Blutentnahme 1 Serummonovette beschrif-

ten mit 60 Min. und bekleben mit dem

Barcode für 3. Abnahme

Arginin-Test

Patient nicht nüchtern!

Blutentnahme: 5 Serummonovetten (weiß/braun), mit 0, 30, 60, 90, 120 Min. beschriften.

Auf dem Formular für endokrinologische Funktionsteste bei "Arginin-Test" die Taktmarke für STH mit weichem Bleistift markieren und die Monovetten mit den entsprechenden Serum-Barcode-Etiketten bekleben.

L-Arginin-Hydrochlorid-Lösung 21 % 0,5 g/kg KG in 500 ml NaCl 0.9 % (1 Amp 20 ml 4,2 g; max 8 Amp = 33 g)

Ablauf:

 Min. Blutentnahme 1 Serummonovette beschriften mit 0 Min. und bekleben mit

dem Barcode für 1. Abnahme

L-Arginin-Infusion über 30 Min.,

30 Min. Blutentnahme 1 Serummonovette be-

schriften mit 30 Min. und bekleben mit

dem Barcode für 2. Abnahme

60 Min. Blutentnahme 1 Serummonovette be-

schriften mit 60 Min. und bekleben mit

dem Barcode für 3. Abnahme.

90 Min. Blutentnahme 1 Serummonovette beschriften mit 90 Min. und bekleben mit dem Barcode für 4. Abnahme.

120 Min. Blutentnahme 1 Serummonovette beschriften mit 120 Min. und bekleben mit dem Barcode für 5. Abnahme.

Clonidin-Test

Vorbereitung:

- Patient nüchtern
- Bettruhe 30 Min. vor und nach Testdurchführung

Blutentnahme: 2 braune Vacutainer (beschriften mit: "vor Clonidin, Datum" und "nach Clonidin, Datum",auf dem Formular für endokrinologische Funktionsteste bei "Clonidin-Test" die Taktmarke für S Katecholamine mit weichem Bleistift markieren und die Vacutainer mit den entsprechenden EDTA-Barcode-Etiketten bekleben.

Ablauf:

0 Min. Clonidintest basal:

Blutentnahme 1 Vacutainer beschriften mit "vor Clonidin, Datum" und bekleben mit dem EDTA-Barcode für 1. Abnahme, dann in Eiswasser sofort in das Koop.

Spez.-Labor.

Gabe von 300 μg Clonidin

(1 Tbl. Catapressan)

alle 30 Min. RR und Puls-Kontrolle!

180 Min. Clonidintest nach 3 h:

Blutentnahme 1 Vacutainer beschriften mit "nach Clonidin, Datum" und bekleben mit dem EDTA-Barcode für 2. Abnahme, dann in Eiswasser sofort in das Koop.

Spez.-Labor.

CRH-Test

Patient nicht nüchtern

Auf dem Formular für endokrinologische Funktionsteste bei "CRH-Test" die Taktmarken für Cortisol und ACTH mit weichem Bleistift markieren und die Monovetten mit den entsprechenden Serum- bzw. EDTA-Barcode bekleben.

Ablauf:

0 Min. Blutentnahme 1 Serummonovette (weiß/braun) 1 große EDTA-Monovette (rot) beschriften mit 0 Min., Datum und bekleben mit dem jeweiligen Material Barcode für 1. Abnahme (Serum braun; EDTA rot).

CRH 100 µg i. v. (innerhalb von 30 Sec.); CAVE Kreislaufüberwachung! (NaCl 0.9 % 250 ml zum Offenhalten der Vene)

30 Min.

Blutentnahme 1 Serummonovette (weiß)
1 große EDTA-Monovette (rot) beschriften mit 30 Min., Datum und bekleben mit
dem jeweiligen Material Barcode für 2.
Abnahme (Serum weiß: EDTA rot).

60 Min. Blutentnahme 1 Serummonovette (weiß)
1 große EDTA-Monovette (rot) beschriften mit 60 Min., Datum und bekleben mit dem jeweiligen Material Barcode für 3.

Abnahme (Serum weiß; EDTA rot).

90 Min.

Blutentnahme 1 Serummonovette (weiß)
beschriften mit 90 Min., Datum und
bekleben mit dem jeweiligen Material
Barcode für 4. Abnahme (Serum weiß)

Dexamethason-Kurztest

Patient nicht nüchtern!

Auf dem Formular für endokrinologische Funktionsteste bei "Dexamethason-Kurztest" die Taktmarken für die gewünschten Parameter (Cortisol, ACTH, Androgene) mit weichem Bleistift markieren und die Monovetten (Serum: Cortisol, Androgene; EDTA: ACTH) mit den entsprechenden Barcode-Etiketten (Serum: Cortisol, Androgene; EDTA: ACTH) bekleben. Unbedingt die Dexamethason Dosierung eintragen.

Tag 1 22:00 Uhr Gabe von Dexamethason 2 mg (bei Körpergewicht > 80 kg: 3 mg)

Tag 2 08:00 Uhr

Blutentnahme: 1 Serummonovette (weiß), bei zusätzlicher ACTH-bestimmung 1 große EDTA-Monovette (rot) beschriften mit Dexa II, Datum und bekleben mit dem jeweiligen Material Barcode für 1. Abnahme (Serum weiß; für zusätzliche ACTH-Bestimmung EDTA rot).

Dexamethason-Langtest

Patient nicht nüchtern!

Auf dem Formular für endokrinologische Funktionsteste bei "Dexamethason-Langtest" die Taktmarken für die gewünschten Parameter (Cortisol, ACTH) mit weichem Bleistift markieren und die Monovetten (Serum: Cortisol; EDTA: ACTH) mit den entsprechenden Barcode-Etiketten (Serum, EDTA) bekleben.

Ablauf:

Tag 1	siehe Dexamethason-Kurztest
Tag 2	siehe Dexamethason-Kurztest

Tag 2 22:00 Uhr Dexamethason 4 mg

Tag 3 22:00 Uhr Dexamethason 8 mg

Tag 4 08:00 Uhr Blutentnahme: 1 Serummonovette

(weiß/braun), bei zusätzlicher ACTH-Bestimmung 1 große EDTA-Monovette (rot) beschriften mit Dexa III, Datum und bekleben mit dem jeweiligen Material Barcode für 2. Abnahme (Serum weiß; für zusätzliche ACTH-Bestimmung EDTA

rot).

22:00 Uhr Dexamethason 16 mg

Tag 5 08:00 Uhr Blutentnahme: 1 Serummonovette (weiß, bei zusätzlicher ACTH-Bestimmung 1 große EDTA-Monovette (rot) beschriften mit Dexa IV. Datum und bekleben mit

dem jeweiligen Material Barcode für 3. Abnahme (Serum weiß; für zusätzliche ACTH-Bestimmung EDTA rot).

GHR-Test

Patient nicht nüchtern!

Blutentnahme: 5 Serummonovetten (weiß), mit 0, 30, 60, 90, 120 Min. beschriften.

Auf dem Formular für endokrinologische Funktionsteste bei "GHRH-Test" die Taktmarke für STH mit weichem Bleistift markieren und die Monovetten mit den entsprechenden Serum-Barcode-Etiketten bekleben.

Ablauf:

0 Min. Braunüle, basale Blutentnahme: 1 Serummonovette beschriften mit 0 Min. und bekleben mit dem Barcode für 1. Abnahme

GHRH 100 μg (= 2 Ampullen) i. v. (NaCl 0.9 % 250 ml zum Offenhalten der Vene)

 Min. Blutentnahme 1 Serummonovette beschriften mit 30 Min. und bekleben mit dem Barcode für 2. Abnahme

60 Min. Blutentnahme 1 Serummonovette beschriften mit 60 Min. und bekleben mit dem Barcode für 3. Abnahme

- 90 Min. Blutentnahme 1 Serummonovette beschriften mit 30 Min. und bekleben mit dem Barcode für 4. Abnahme
- 120 Min. Blutentnahme 1 Serummonovette beschriften mit 60 Min. und bekleben mit dem Barcode für 5. Abnahme

Glukosetoleranz-Test

Blutentnahme: 5 Serummonovetten (weiß/braun) für STH-

Bestimmung mit 0, 30, 60, 90, 120 Min. beschriften.

5 Fluorid-Monovetten (gelb)

für Blutzuckerbestimmung mit

0, 30, 60, 90, 120 Min. beschriften.

Auf dem Formular für endokrinologische Funktionsteste bei "oGTT-Test" die Taktmarke für STH (und/oder Insulin, C-Peptid) mit weichem Bleistift markieren und die Monovetten mit den entsprechenden Serum-Barcode-Etiketten bekleben. Die Anforderung der Blutzuckerbestimmung erfolgt über das spezielle Formular Funktionstest (Blutzucker)

Glucose 100g (Dextro oGT, CAVE: in einer Flasche Dextro sind nur 75g Glucose, d. h. die restlichen 25 g müssen zugesetzt werden!)

Ablauf:

 Min. basale Blutentnahme: 1 Serummonovette beschriften mit 0 Min. und bekleben mit dem Barcode für 1. Abnahme

1 Fluoridmonovette (gelb) bekleben mit dem Barcode nüchtern

anschl. Glucose trinken lassen

 Min. Blutentnahme 1 Serummonovette beschriften mit 30 Min. und bekleben mit dem Barcode für 2. Abnahme

60 Min. Blutentnahme 1 Serummonovette beschriften mit 60 Min. und bekleben mit dem Barcode für 3. Abnahme

- 90 Min. Blutentnahme 1 Serummonovette beschriften mit 30 Min. und bekleben mit dem Barcode für 4. Abnahme
- 120 Min. Blutentnahme 1 Serummonovette beschriften mit 60 Min. und bekleben mit dem Barcode für 5. Abnahme
 - 30 Min. Blutentnahme 1 Fluoridmonovette (gelb) beschriften mit 30 Min. und bekleben mit dem Barcode
 - 60 Min. Blutentnahme 1 Fluoridmonovette (gelb) beschriften mit 60 Min. und bekleben mit dem Barcode
 - 90 Min. Blutentnahme 1 Fluoridmonovette (gelb) beschriften mit 90 Min. und bekleben mit dem Barcode
- 120 Min. Blutentnahme 1 Fluoridmonovette (gelb) beschriften mit 120 Min. und bekleben mit dem Barcode

Lasix-Test

Indikation:

Hypertonieabklärung, Ausschluss Hyperaldosteronismus

Vorbereitung:

Absetzen von Spironolacton: 6 Wochen

Natriuretika 2 Wochen

Laxantien, Ovulationshemmer,

Kortikosteroide, Lithium, Kalium: 1 Woche

- Patient nüchtern
- Bettruhe 4h vor Testbeginn
- 2 EDTA-Monovetten (rot) beschriften: "vor Lasix", "nach Lasix"
- Auf dem Formular für endokrinologische Funktionsteste bei "Furosemid-Test" die Taktmarke für Renin und/oder Aldosteron mit weichem Bleistift markieren und die Monovetten mit den entsprechenden Serum-Barcode-Etiketten bekleben.

Ablauf:

 Min. basale Blutentnahme: 1 EDTA-Monovette beschriften mit "vor Lasix" und bekleben mit dem EDTA-Barcode für 1. Abnahme

Gabe von Lasix 40 mg i. v., Patienten zum Laufen auffordern

60 Min. Blutentnahme: 1 EDTA-Monovette beschriften mit "nach Lasix" und bekleben mit dem EDTA-Barcode für 2. Abnahme

Interpretation:

Normal: Anstieg von Aldosteron, Renin nach Gabe von Lasix um das 2-5 (6)-fache.

Hyperaldosteronismus (M. Conn): keine Stimulation von Aldosteron, Renin.

LHR-Test

Auf dem Formular für endokrinologische Funktionsteste bei "LHRH-Test" die Taktmarken für LH und FSH mit weichem Bleistift markieren und die Monovetten mit den entsprechenden Serum-Barcode bekleben.

Patient nicht nüchtern!

Ablauf

252

0 Min. Braunüle, basale Blutentnahme: 1 Serum-Monovette (weiß) beschriften mit 0 Min., Datum und mit dem Serum-Barcode für 1. Abnahme bekleben Gabe von LHRH 100 μg i. v., (NaCl 0,9 % 250 ml z Offenhalten der Vene)

30 Min. Blutentnahme: 1 Serum-Monovette beschriften mit 30 Min., Datum und bekleben mit dem Serum-Barcode für 2. Abnahme

Metopiron-Test

Auf dem Formular für endokrinologische Funktionsteste bei "LHRH-Test" die Taktmarken für ACTH, Cortisol, Substanz S mit weichem Bleistift markieren und die Monovetten mit den entsprechenden Serum-Barcode bekleben.

Meto 1: basale Blutentnahme:

ACTH-Bestimmung: 1 EDTA-Monovette

Leistungsverzeichnis_ZL 14.10.2011.doc

- beschriften mit "Meto 1", Datum und beklebenmit dem EDTA-Barcode für 1. Abnahme
- Cortisol-Bestimmung: 1 Serum-Monovette beschriften mit "Meto 1", Datum und bekleben mit dem Serum-Barcode für 1. Abnahme.
- Substanz S-Bestimmung: 1 Serum-Monovette beschriften mit "Meto 1", Datum und bekleben mit dem Serum-Barcode für 1. Abnahme.

22:00 Uhr

Gabe von Metopiron Kapsel mit 1 Glas Milch und Brötchen

bis 50	kg KG	1.50 g Metopiron	(6 Kapseln zu 0.25 g)
51 – 60	kg KG	1.75 g Metopiron	(7 Kapseln zu 0.25 g)
61 – 70	kg KG	2.00 g Metopiron	(8 Kapseln zu 0.25 g)
71 – 80	kg KG	2.25 g Metopiron	(9 Kapseln zu 0.25 g)
81 – 90	kg KG	2.50 g Metopiron	(10 Kapseln zu 0.25 g)
>90	kg KG	3.00 g Metopiron	(12 Kapseln zu 0.25 g)

Nächster Tag bis 8:00 Uhr

Meto 2: Blutentnahme:

- ACTH-Bestimmung: 1 EDTA-Monovette beschriften mit "Meto 2", Datum und bekleben mit dem EDTA-Barcode für 2. Abnahme.
- Cortisol-Bestimmung: 1 Serum-Monovette beschriften mit "Meto 2", Datum und bekleben mit dem Serum-Barcode für 2. Abnahme,

Substanz S-Bestimmung: 1 Serum-Monovette beschriften mit "Meto 2", Datum und bekleben mit dem Serum-Barcode für 2. Abnahme.

Orthostase-Test

Vorbereitung:

Absetzen von Medikamenten.

- ACE-Hemmern 2 Wochen vorher
- Spironolacton
 Frauen:
 4 Wochen vorher
 Untersuchung in der 1. Zyklushälfte
- Patient Bettruhe 24:00 Uhr bis 08:00 Uhr

Auf dem Formular für endokrinologische Funktionsteste bei "Orthostase-Test" die Taktmarken für Renin und Aldosteron mit weichem Bleistift markieren und die Monovetten mit den entsprechenden Serum-Barcode bekleben (1. Abnahme in Ruhe, 2. Abnahme in Orthostase).

08:00 Uhr 1. Blutentnahme in Ruhe 1 EDTA-Monovette beschriften mit Datum und bekleben mit dem EDTA-Barcode für

1. Abnahme

anschließend soll der Patient 2 h herumlaufen

10:00 Uhr 2. Blutentnahme in Orthostase 1 FDTA-Monovette beschriften mit Datum und bekleben mit dem EDTA-Barcode für 2. Abnahme

Pentagastrin-Test

Indikation:

Stimulation von Calcitonin bei Verdacht auf C-Zell-Carcinom der Schilddrüse (Diagnose und Verlaufsbeobachtung, Verdacht auf MEN II).

Vorbereitung:

- 3 Serummonovetten (weiß) beschriften mit 0, 2, 5
 Min., Datum
- Auf dem Formular für endokrinologische Funktionsteste bei "Pentagastrintest" die Taktmarke für Calcitonin mit weichem Bleistift markieren und die Monovetten mit den entsprechenden Serum-Barcode-Etiketten bekleben.
- Patient muss nicht nüchtern sein, ist aber wegen der Nebenwirkungen von Vorteil.
- Pentagastrin (Peptavlon, Aufbewahrung im Kühlschrank) Dosierung:
 Peptavlon 500 μg in 2 ml auf 10 ml Gesamtmenge mit 0.9 % NaCl aufziehen.

Dosis pro Patient:

50	kg KG	0.5	ml der verdünnten Lösung
60	kg KG	0.6	ml der verdünnten Lösung
70	kg KG	0.7	ml der verdünnten Lösung
80	kg KG	8.0	ml der verdünnten Lösung
90	kg KG	0.9	ml der verdünnten Lösung
100	kg KG	1.0	ml der verdünnten Lösung

Ablauf:

 Min. basale Blutentnahme: 1 Serummonovette beschriften mit 0 Min. und bekleben mit dem Serum-Barcode für 1. Abnahme rasche i. v. Injektion von Pentagastrin "im Schuss", **CAVE: Übelkeit, Brech**reiz!

- 2 Min. Blutentnahme: 1 Serum-Monovette beschriften mit 2 Min. und bekleben mit dem Serum-Barcode für 2. Abnahme
- 5 Min. Blutentnahme: 1 Serum-Monovette beschriften mit 5 Min. und bekleben mit dem Serum-Barcode für 3. Abnahme

TRH-Test

Vorbereitung:

- 2 Serummonovetten (weiß) beschriften mit 0 und 30 Min., Datum
- Auf dem Formular für endokrinologische Funktionsteste bei "TRH-Test" die Taktmarken für die zu untersuchenden Parameter (TSH, Prolaktin, STH) mit weichem Bleistift markieren und die Monovetten mit den entsprechenden Serum-Barcode-Etiketten bekleben.
- Patient muss nicht nüchtern sein.

Ablauf:

0 Min. basale Blutentnahme: 1 Serummonovette beschriften mit 0 Min. und bekleben mit dem Serum-Barcode für 1. Abnahme

TRH-Nasenspray, 1 Hub in jedes Nasenloch

30 Min. Blutentnahme: 1 Serum-Monovette beschriften mit 30 Min. und bekleben mit dem Serum-Barcode für 2. Abnahme

Index

ACE	25
ACTH (Adrenocorticotropes Homon)	.25
ACTH-Kurztest	
Acetylcholin-Rezeptor (Autoantikörper)	25
Acetylsalicylsäure (ASS)	
Acetylsalicylsäure (ASS) zur Beurteilung der	
Thrombozytenaggregationshemmung	.26
ADAMTS 13	
ADH (Antidiuretisches Hormon)*	.27
Adrenalin im Plasma	
Adrenalin im Urin	.27
AFP (α -Fetoprotein)	.28
Alanin-Aminotransferase (ALT/GPT)	.28
Albumin im Liquor	.29
Albumin im Serum/Plasma	.29
Albumin im Urin	.29
Aldosteron	
Aldosteron nach Chromatographie	.30
Aldosteron frei im Urin	.30
Aldosteron-18-Glucuronid im Urin	31
Alkalische Phosphatase	31
Alkalische Phosphatase (Placenta spezifisch	
[hPLAP]) *	31
Alkalische Phosphatase (Knochen spezifisch	
[BAB])	.32
Alkalische Phosphatase Isoenzyme	
Alkalische Leukozyten-Phosphatase (Index)	33

Alkohol (Ethanol)	33
Allergenscreening	
Allo-Tetrahydrocortisol	
alpha1-Antitrypsin	
alpha1-Antitrypsin im Stuhl*	
alpha1-Antitrypsin Genotypisierung	
alpha1-Mikroblobulin im Urin	
alpha-Amylase	
alpha-GST	
alpha1-Glykoprotein	35
alpha-2-Anti-Plasmin	36
ALT/GPT	
Aluminium im Serum	36
Amikacin	36
Aminolävulinsäure	
Amiodaron/Desethylamiodaron	37
Amisulprid	37
Amitriptylin (Ami- und Nortryptilin)	37
Ammoniak im Plasma	38
Amphetamine	
Amylase im Plasma/Serum	38
Amylase im Urin	38
Amylase-Isoenzyme im Plasma/Serum	
(Pankreas-Amylase)	
ANA	39
Androstendion	
Androstendiolglukoronid	
Angiotensin Converting Enzyme (ACE)	40

Anti-Hav	40
Anti-HBc	40
Anti-HBe	40
Anti-HCV	40
Anti-HIV	41
Anti-Müller-Hormon	41
α 2-Antiplasmin (Aktivität)	41
Anti-Saccharomyces cervisiae Antikörper	42
Anti-Streptokinase *	
Anti-Streptolysin	42
Antithrombin (III)-Aktivität	43
APC-Genotypisierung	43
APC-Resistenz	
Apolipoprotein A 1	43
Apolipoprotein B	44
Aspartat-Aminotransferase (AST/GOT)	44
ASS	44
Auto-Ak gegen Acetylcholin-Rezeptor	45
Auto-Ak gegen Becherzellen	45
Auto-Ak gegen Belegzellen	
Auto-Ak gegen Cardiolipin	
Auto-Ak gegen Doppelstrang-DNS	
Auto-AK gegen Doppelstrang-DNS (FARR-Test)	46
Auto-AK gegen Doppelstrang-DNA	
(Crithidia luciliae)	46
Auto-AK gegen ENA (Extrahierbare nukleäre	
Antigene)	47
JO-1	47

RNP (U1-RNP)	47
SCL70	47
Sm-Antigen	47
SSA-Antigen (RO)	47
SSB-Antigen (La)	47
Auto-AK gegen Éndomysium	47
Auto-Ak gegen Epidermale Basalmembran	
Auto-Ak gegen Epidermale Interzellularsubstanz	48
Auto-Ak gegen exokrines Pankreas	
Auto-Ak gegen GAD 65 (Glutaminsäure	
Dehydrogenase)	48
Auto-Ak gegen glatte Muskulatur	49
Auto-Ak gegen Gliadin	
Auto-Ak gegen Gliadin (IgA)	
Auto-Ak gegen	
Glomeruläre/tubuläre Basalmembran	50
Auto-Ak gegen Granulozytenzytoplasma (p- und c	-
ANCA)	
Auto-Ák gegen Histone	51
Auto-Ak gegen Inselzellen	
Auto-Ak gegen Intrinsic Faktor	
Auto-Ak gegen Lactoferrin	
Auto-Ak gegen Leydig/Sertoli-Zellen	
Auto-Ak gegen Liver-Kidney-Mikrosome (LKM-Aut	
AK)	52
Auto-Ak gegen Mitochondriensubformen (M2, M4,	
M9)	
Auto-Ak gegen Myelin	

Auto-Ak gegen Myeloperoxidase (MPO)	.53
Auto-Ak gegen Nebenniere	.53
Auto-Ak gegen Nukleosomen	
Auto-Ak gegen neuronale Antigene (ANNA: Hu, Ri	í,
Yo)	.54
Auto-Ak gegen Proteinase 3	.54
Auto-Ak gegen quergestreifte Muskulatur	.54
Auto-Ak gegen Schilddrüsen-Proteine	
(Thyreoglobulin [Anti-TG], thyreoidale Peroxidase	
[Anti-TPO/MAK], TSH-Rezeptor-Autoantikörper	
[TRAK])	.54
Anti-TPO/Anti-TG	.55
TRAK (TSH-Rezeptor Auto-AK)	.55
Auto-Ak gegen Tyrosinphosphatase IA-2	.55
Auto-Ak gegen nukleäre Antigene (ANA)	.56
Auto-Ak gegen zyklisch zitrullinierte Peptide (Anti-	
CCP)	.56
(altes Verfahren s. u.)	
Auto-Ak gegen zyklisch zitrullinierte Peptide (Anti-	
CCP)	.56
Bence-Jones Protein	.57
Benzodiazepine	.57
β-2-Mikroglobulin im Serum	.57
β-2-Mikroglobulin im Urin (Dialysat)	
T-HCG	
Bilirubin, direkt	
Bilirubin, gesamt	
Bilirubin im Punktat (Dialysat)	

Blutbild	60
Blutgase	
Blutkörperchensenkungsgeschwindigkeit (BKS).	
Blutungszeit (in vitro)	
BNP (Brain Natriuretic Peptide)	
Bromazepam im Serum	
Bromid *	
C1-Esterase-Inhibitor	
C3c	
G4	
CA 125	
CA 15-3	
CA 19-9	
CA 72-4	
Calcitonin	
Calcium im Punktat	
Calcium im Dialysat	
Calcium im Serum	
Calcium im Urin	
Carbamazepin im Serum	
Carbamazepin-Epoxid im Serum	
Carbohydrate Deficient Transferrin	
Carcino-Embryonales Antigen	
Cardiolipin-Autoantikörper: Cardiolipin-IgG-	
Antikörper	73
Cardiolipin-IgM-Antikörper	
CD 25 (sCD 25)	
CDT (Carbohydrate Deficient Transferrin)	

CEA	74
CHE	74
Chlordiazepoxid	75
Chlorid im Dialysat	
Chlorid im Liquor	76
Chlorid im Plasma	76
Chlorid im Urin	
Cholesterin im Dialysat	77
Cholesterin, Gesamt	77
Cholesterin im Punktat	77
Cholesterin, HDL	78
Cholesterin, LDL	78
Cholesterin, VLDL	78
Cholinesterase im Plasma	79
Chromogranin A (neuroendokrine Tumoren)	79
Chymotrypsin im Stuhl *	
Ciclosporin A (monoclonal)	80
Citalopram *	
CK (Creatin-Kinase)	80
CK-MB Isoenzym	
CK Isoenzym-Elektrophorese *	81
Clobazam	81
Clomipramin	82
Clonidintest	82
Clonazepam	82
Clopidogrel	82
zur Beurteilung der	
Thrombozytenaggregationshemmung	82

Clozapin	
Coeruloplasmin im Serum	83
Coffein	
CO-Hämoglobin	
Corticosteron im Serum/EDTA-Plasma	84
Corticosteron frei im Urin	84
Cortisol im Serum	85
Cortisol im Urin	
Cortisol frei im Urin nach Chromatographie	85
Cortison im Serum/EDTA-Plasma	
Cortison frei im Urin nach Chromatographie	86
Cotinin *	
C-Peptid im Serum	
C-reaktives Protein im Plasma	
C-reaktives Protein im Punktat	87
C-reaktives Protein (high sensitive)	
Creatinkinase	88
Crosslinks	88
Cyfra 21-1	
Cystatin C	
Cytomegalie-IgM-Ak	
Danaparoid (Orgaran)	
DDAVP (Desmopressin)	
D-Dimer	
Dehydroepiandrosteron	90
Dehydroepiandrosteronsulfat	91
Delta-Aminolävulinsäure (δ-ALS)	
Desethylamiodaron	91

Desipramin	91
Desmethyldiazepam (Nordiazepam)	92
Desmopressin	92
Siehe DDAVP	92
11-Desoxycorticosteron	92
11-Desoxycorticosteron, frei im Urin	92
11-Desoxycortisol (Substanz S)	93
21-Desoxycortisol	93
21-Desoxycortisol, frei im Urin	93
Dexamethason-Test	
DHEA (Dehydroepiandrosteron)	94
DHEAS (Dehydroepiandrosteronsulfat)	95
Diazepam	
Differentialblutbild	95
Digitoxin	95
Digoxin	
Dihydrotestosteron (DHT) nach Chromographie	
DNA/RNA-Tests	96
DNA-Antikörper	96
Dopamin im Plasma	
Doxepin	
DPD-Crosslinks (Desoxypyridinolin-Crosslinks)	97
Drogenscreening	
Drogen (Einzeltestung)	99
Ecarin Zeit	
Eisen im Lebergewebe	
Eisen im Plasma	100
Eisen im Urin	100

Eisenbindungskapazität (totale; TIBC)	101
Eiweiß im Dialysat	
Eiweiß im Liquor	
Eiweiß im Punktat	
Eiweiß im Plasma	
Eiweiß im Urin	
Eiweißelektrophorese (Serum)	102
Eiweißelektrophorese (Urin*)	
Elastase (Pankreas-Elastase 1) *	
Elektrophorese	
ENA [']	
Epithelien im Urin	
Erythropoietin	104
Erythrozyten	
Erythrozyten im Urin	
Ecitalopram *	
Ethanol im Blut	
Ethosuximid	
Ethylglucuronid	106
Everolimus	
Faktor II-Genotyp (Prothrombin 20210-Mutation).	107
Faktor V-Genotyp (Faktor V-Leiden, Genotyp der	
APC-Resistenz)	107
Ferritin	107
Fette im Stuhl (Gesamtlipide) *	108
Fibrinmonomere	
Fibrinogen	108
Fibrinongen-Spaltprodukte	109

FK 506 (Tacrolimus, Prograf°)	109
Flunitrazepam	109
Flurazepam	110
Folsäure (Folat)	110
Fondaparinux (Arixtra)	
Freier Androgen-Index (FAI)	110
Freie Fettsäuren (langkettige C14 – C20) *	110
Freie Fettsäuren (sehr langkettige C22 – C26) *	
Freies Hämoglobin im Plasma/Serum	
Freies T3	
Freies T4	
Freies Testosteron	
FSH (Follikel-stimmulierendes Hormon)	
FT3 (freies Trijodthyronin)	
FT4 (freies Thyroxin)	
G-6-PDH in Erythrozyten	114
GAD-AK (Glutaminsäure-Decarboxylase-	
Antikörper)	
Galactose-Eliminations-Test	114
γ-GT (Gamma-GT)	115
Gastrin *	
GBM-AK	
Gentamycin	
Gerinnungsfaktor I	
Gerinnungsfaktor II (Prothrombin)	
Gerinnungsfaktor V	
Gerinnungsfaktor VII	
Gerinnungsfaktor VIII	117

Gerinnungsfaktor IX	117
Gerinnungsfaktor X	118
Gerinnungsfaktor Xa*	118
Gerinnungsfaktor XI	
Gerinnungsfaktor XII	
Gerinnungsfaktor XIII	
Gesamteiweiß	
GH	120
Gliadin-Antikörper	120
Glomeruläre Basalmembran	
Glucose im Blut	
Glucose im Liquor	121
Glucose im Punktat	
Glucose im Urin	122
Glucose-6-Phosphat-Dehydrogenase *	122
Glutathion-S-Transferase alpha (GST-alpha)	122
GOT (AST)	123
GP Ilb-IIIa-Inhibitor	123
GPT (ALAT)	123
Großes Blutbild	123
Hämatokrit	124
Hämochromatose-Gentest (HFE-Gen)	124
Hämoglobulin (Hb)	124
Hämoglobin A1c	124
Hämoglobin A ₂	
Hämoglobine und seine Varianten	125
Hämoglobin F (Hb-F)	
Hb-F-Zellen	126

Haptoglobin	126
Harnsäure im Punktat/Dialysat	126
Harnsäure im Plasma	
Harnsäure im Urin	127
Harnsäure im Urin / Kreatinin	127
Harnsäure im Dialysat	128
Harnstoff im Plasma	
Harnstoff im Urin	
Hb-A1c	
*: National Glycohemoglobin Standardization	
Program	129
**: International Federation of Clinical Chemistry	and
Laboratory Medicine	
Hb F-Zellen (fetale Erythrozyten)	129
HDL	
Helicobacter pylori-AK	
Helicobacter pylori Antigennachweis im Stuhl	130
Hepatitis-Serologie	
Anti-HAV (ges.)	130
Anti-HAV (lgM)	
HBs-Antigen	
HBs-Antigen - Bestätigung	131
Anti-HBc (ges.)	132
Anti-HBc (IgM)	132
Anti-HBs	
HBe-Antigen	133
Anti-HBe	
Anti-HCV	134

HIV 1 / 2 Suchtest	135
Hirudin und Analoga	135
Homocystein	136
Homovanilinsäure im Urin	136
Mono-Hydroxy-Carbamazepin/10- Hydroxy-	
Carbamazepin	137
18-Hydroxy-Corticosteron	
18-Hydroxy-Corticosteron, frei im Urin	138
18-Hydroxy-Cortisol	
18-Hydroxy-Cortisol, frei im Urin	138
5-Hydroxy-Indol-Essigsäure (5-HIES)	139
17-Hydroxypregnenolon	139
17-Hydroxypregnenolon, frei im Urin	139
17-Hydroxyprogesteron	140
17-Hydroxyprogesteron, frei im Urin	
17-Hydroxyprogesteron im Speichel	
Hydroxrisperidon	
25-Hydroxy-Vitamin D	
Hypochrome Erythrozyten	
IGF-1 (Somatomedin C)	142
lgG im`Urin	
lgG-Subklassen (lgG 1, 2, 3, 4)	
IgG-Subklassen (IgG 1, 2, 3, 4) (Fortsetzung)	
lgG-Subklassen (lgG 1, 2, 3, 4) (Fortsetzung)	
Interleukin 2-Rezeptor, löslicher (sIL-2-R, sCI	
Imipramin	
Immunelektrophorese im Serum (Immunfixati	
Immunelektrophorese im Urin (Immunfixation)146

immunglobulin A (IgA) im Liquor	146
Immunglobulin A (IgA) im Serum	147
Immunglobulin D (IgD) im Serum	147
Immunglobulin E (IgE) im Serum	148
Immunglobulin G (IgG) im Liquor	148
Immunglobulin G (IgG) im Serum	149
Immunglobulin M (IgM) im Liquor	149
Immunglobulin M (IgM) im Serum	149
INR (International Normalized Ratio)	150
Insulin	150
Insulin-Ak	
Intrinsic-Faktor-AK	
In vitro Blutungszeit	151
Isoelektrische Fokussierung (Oligoklonale	
Banden)	
lsoenzyme der Alkalischen Phosphatase (AP)	151
Isoenzyme der Amylase	
Isoenzyme der Creatinkinase (CK)	
lsoenzyme der Lactat-Dehydrogenase (LDH)	
Kalium im Plasma	
Kalium im Urin	152
Kappa(κ)-Leichtketten im Serum	153
Kappa(κ)-Leichtketten im Urin	153
Katecholamine im Plasma	153
Katecholamine im Urin	154
Knochen-AP-Isoenzym (BAP), Ostase	156
Knochenmark	
Kokainmetabolite	157

Komplement	157
Kreatinin im Dialysat	
Kreatinin im Plasma/Serum	
Kreatinin im Urin	158
Kreatinin-Clearance	159
Kryoglobuline	159
Kupfer im Lebergewebe	160
Kupfer im Serum	160
Kupfer im Urin	160
Lactat im Liquor	161
Lactat im Plasma	
Lactoferrin im Stuhl	162
Lambda (λ)-Leichtketten im Serum	162
Lamda(λ)-Leichtketten im Urin	162
Lamotrigin	162
LDH (Lactatdehydrogenase)	163
LDH (Lactatdehydrogenase) im Punktat	
LDH-Isoenzyme *	163
LDL	
Leichtketten	
Leptin	
Leukozyten	
Leukozyten im Urin	
LH (Luteinisierendes Hormon)	
LH/FSH-Stimulationstest	
Lipase im Plasma	
Lipase im Punktat	
Lipoprotein (a)	166

Liquordiagnostik	167
Liquordiagnostik (Fortsetzung)	168
Liquordiagnostik (Fortsetzung)	169
Lithium	169
Lorazepam	169
Lp (a)	170
LSD	170
Lupus Antikoagulans	170
Luteinisierendes Hormon	
LWM-Heparin	170
Lysodren	171
Lysozym	171
Magnesium im Plasma/Serum	172
Magnesium im Urin	172
MAK	172
lpha2-Makroglobulin (alpha 2)	173
Malaria-Diagnostik	
Malaria-Direktnachweis	173
Maprotilin	
Metanephrin/Normetanephrin im Plasma	174
Metanephrin im Urin	
Methadon	174
Methämoglobin im Blut	
Methotrexat	
Methylentetrahydrofolat-Reduktase	
Metoclopramid-Test	
Mikroglobulin	
Mikrosomale Schilddrüsen-Antikörper	

Mitochondrien	175
Molekulargenetische Untersuchungen	176
Mononukleose-Schnelltest	177
Morphinderivate	177
Mycophenolat-Mofetil	177
Myoglobin im Serum	
Myoglobin im Urin	
Natrium im Dialysat	179
Natrium im Plasma	
Natrium im Urin	179
Netilmycin	180
Nitrazepam	
Noradrenalin	
Normetanephrine im Plasma	180
Normetanephrine im Urin	180
Nortryptilin	
NSE (Neuronen-spezifische Enolase)	181
NT-Pro-BNP	181
Olanzapin	
Oligoklonale Banden	
Opiate	
Orgaran (Danaproid)	182
Orosomucoid	
Osmolalität im Serum	183
Osmotische Resistenz der Erythrozyten	183
Osteocalcin	
Östradiol (E2)	
Oxalsäure (Oxalat) im Urin	

Oxazepam	185
Oxcarbazepin (Monohydroxy-Carbazepin)	185
Pankreas Amylase	186
Pankreas Elastase	186
Paracetamol	
Parathormon intakt (Sequenz 1–84)	
Parathormon related Peptide (PTHrP) *	187
Partielle Thromboplastinzeit aktiviert (aPTT)	187
PCA 3 (Molekulargenetische Untersuchung)	187
PFA- 100	188
Phenobarbital	188
Phenytoin	188
PHI	
Phosphat im Dialysat	189
Phosphat im Punktat	189
Phosphat im Plasma	
Phosphat im Urin	
Phosphatase	
Plasma-Renin-Aktivität	
Plasma-Thrombinzeit (TZ)	
Plasminogen (Aktivität)	
Plättchenaggregation	
Porphobilinogen im Urin (quantitativ)	
Porphyrine (fraktioniert) im Urin	
Präalbumin (Transthyretin)	
Primidon	
Pro-BNP (Pro-Brain Natriuretic Peptide)	
Procalcitonin ST (semiquantitativ)	194

Procalcitonin (sensitiv)	194
Progesteron im Plasma	195
Prograf®	
Proinsulin *	195
Prolaktin	
Prostata-spezifisches Antigen	
Protein	196
Protein C-Aktivität	
Protein S-Aktivität	
Prothrombin 20210-Mutation	
PSA (Prostata-spezifisches Antigen)	
Freies PSA	
PTH	
Quetiapin	
Quicktest (Thormboplastinzeit)	
INR	
Renin (aktives Renin)	
Reptilase-Zeit	
Retikulozyten	
RET Proto-Onkogen (MEN-2)	
Rheumafaktor (Latex)	
Rheumafaktor (Waaler-Rose)	
Ristocetin-Cofactor	
RNP und Ribonukleoproteine	201
Risperidon / Hydroxyrisperidon (9-OH-Risperio	
S-100 im Serum	
Salicylsäure (Salicylat)	
Saures α 1-Glykoprotein (Orosomucoid)	202

300 (Squamous Ceil Galcinoma Ag)	∠∪ა
sCD25	203
Schilddrüsen-Autoantikörper	203
Scl-70	
Selen im Serum	203
Serotonin	204
SHBG (Sex-Hormone-Binding Globulin)	204
Sideroblasten	204
Sirolimus (Rapamune $^{ ext{ iny B}}$)	204
SM-Antigen	204
SmC (Somatomedin C)	205
Somatotropes Hormon	205
Speichel-Amylase-Isoenzym	205
Squamous Cell Carcinome Antigen	205
SSA und SSB	205
Stuhlfette	
Styrol-Metabolite im Urin	
Sultiam	
Tacrolimus	
Testosteron, freies	
Testosteron nach Chromatographie	207
Testosteron, gesamt	208
Tetrahydroaldosteron	
Tetrahydrocortisol	
Tetrahydrocortison	
Theophillin	
Thrombozyten	
Thrombozytenfunktionsteste	210

Thyreoglobulin	.210
Thyreoglobulin-Autoantikörper	
Thyreoidea stimulierendes Hormon	
Thyroxin	
TIBC	
Tobramycin	
Tranquillizer/Benzodiazepine	
Transferrin	
Transferrinrezeptor löslicher (sTfR)	
Transferrinsättigung	
Tricyclische Antidepressiva	.212
Triglyceride	
Trijodthyronin	.213
Troponin I	.213
Troponin T (cTNT) hochsensitiv	.213
Tryptase	.213
TSH (Thyreoidea stimulierendes Hormon)	.214
TSH-Rezeptor-Autoantikörper	.214
Uroporphyrin	.215
Valproinsäure	.216
Vancomycin	
Vanillinmandelsäure im Urin	.216
Vitamin A (Retinol)	.216
Vitamin B1 (Thiaminpyrophosphat)	.217
Vitamin B2 (FAD)	.217
Vitamin B6 (Pyridoxalphospat)	.217
Vitamin B12	.218
Vitamin D, 25(OH)D3 (= 25-Hydroxy-Vitamin D)	.218

Vitamin E (Tocopherol)	218
Von Willebrand-Faktor (Konzentration)	218
Wachstumshormon	
Waaler-Rose-Test (IgM-Rheuma-Faktor)	219
Zink im Blut	220
Zink im Urin	220
lg E Allergen-spezifisch	222
Allergene:	223
Hausstaubmilben-Mischung:	227
Vorratsmilben:	227
Epithelienmischung:	227
Nagermischung:	228
Federmischung:	228
Käfigvögel-Mischung:	228
Nahrungsmittel-Mischung 1:	228
Nahrungsmittel-Mischung 3:	
Nahrungsmittel-Mischung 5:	
Nahrungsmittel-Mischung 9:	229
Nuss-Mischung:	
Nuss-Mischung:	
Meeresfrüchte-Mischung:	230
Fisch-Mischung:	230
Getreide-Mischung:	231
Gemüse-Mischung1:	231
Gemüse-Mischung 2:	231
Gemüse	232
Milchprodukte:	232
Hühnerei:	232

Obstmischung 4:	233
Obst:	233
Zitrusfrüchte:	233
Fleisch-Mischung:	234
Gewürz-Mischung 1:	234
Gewürz-Mischung 2:	234
Gewürz-Mischung 3:	
Gewürze:	
Berufsallergene:	235
Arzneimittel:	
Sonstige Allergene:	236
Insekten:	
ACTH-Kurztest	238
Arginin-Test	239
Clonidin-Test	241
CRH-Test	242
Dexamethason-Kurztest	244
Dexamethason-Langtest	245
GHR-Test	247
Glukosetoleranz-Test	248
Lasix-Test	250
LHR-Test	252
Metopiron-Test	253
Orthostase-Test	
Pentagastrin-Test	256
TDU Toot	