Kliniken & Institute … Kliniken Radiologische Klinik … RadioOnkologie und… Research Research Sektion Medizinphysik …

Sektion Medizinphysik

Der Erfolg der Strahlentherapie beruht auf über 100 Jahren Erfahrung. Die zugrundeliegenden Prozesse, welche die Wirkung von Strahlung auf Normalgewebe bestimmen, sind jedoch noch immer größtenteils unverstanden. Wir versuchen, Strahlenbiologie von der Nanometer-Skala der Ionisierung bis zur Größe des gesamten Organs zu verstehen. Dazu nutzen wir Werkzeuge aus nichtlinearer Dynamik, Nichtgleichgewichts-Thermodynamik, und Netzwerktheorie in Verbindung mit Statistischen Methoden, mit welchen wir biologische Daten aus internationalen Kollaborationen mit Biologen modellieren und analysieren. Eine enge Partnerschaft mit den Experten für Monte Carlo Dosisberechnung und mit Ärzten am HIT ermöglicht uns eine Verbindung präklinischer und klinischer Ergebnisse und gewährleistet die Translation von mikroskopischen Beobachtungen in die Klinik.

The success of radiation therapy is based on over 100 years of experience. However, the underlying processes that determine the effect of radiation on normal tissue are still largely misunderstood. We try to understand radiation biology from the nanometer scale of ionization to the size of the entire organ. We use tools from nonlinear dynamics, non-equilibrium thermodynamics, and network theory in connection with statistical methods with which we model and analyze biological data from international collaborations with biologists. A close partnership with the experts for Monte Carlo dose calculation and with doctors at the HIT enables us to combine preclinical and clinical results and ensures the translation of microscopic observations into the clinic.

Aktuelle Forschungsprojekte | Current Research Projects

Mechanisms of late radiation-induced lesions in the central nervous system

Dr. Anika Simon, Dr. Emanuel Bahn, Prof. Dr. Markus Alber

Therapeutic irradiation of brain tissue may lead to delayed effects that range from cognitive impairment to the occurrence of necrosis. With this project we want to address the delayed radiation necrosis experimentally on a molecular level in vitro and in vivo. Inflammation, vascular damage and demyelination belong to the relatively wellcharacterized acute phase that is observed shortly after irradiation. The acute phase is followed by a sub-acute phase, in which progenitor cells start to regenerate the harmed tissue. At last, a late phase is initiated that is characterized by a remodeling of the tissue and the progenitor cells. During this phase, which takes about months or years, the severe side effect delayed radiation necrosis may be observed. Histologically, the late radiation necrosis is characterized by edema, white matter necrosis, inflammation and blood-brain barrier disruption. In contrast, very little is known about the molecular mechanisms behind this side effect, especially during the extended latent phase.

Volume Effects in the Central Nervous System and Sparing in Microbeam/ Minibeam Radiation

Volume Effects and the Intestinal Stem Cell Niche

A second (third, fourth...) look at the In Vitro Clonogenic Assay

Development of a High Precision Irradiation System for In Vivo RBE Measurements with Ion Beams