Globosides but Not Isoglobosides Can Impact the Development of Invariant NKT Cells and Their Interaction with Dendritic Cells

Stefan Porubsky, Anneliese O. Speak, Mariolina Salio, Richard Jennemann, Mahnaz Bonrouhi, Rashad Zafarulla, Yogesh Singh, Julian Dyson, Bruno Luckow, Agnes Lehuen, Ernst Malle, Johannes Muthing, Frances M. Platt, Vincenzo Cerundolo and Hermann-Josef Grone

J Immunol 2012; 189:3007-3017; Prepublished online 8 August 2012; doi: 10.4049/jimmunol.1201483
http://www.jimmunol.org/content/189/6/3007

Supplementary Material
http://www.jimmunol.org/content/suppl/2012/08/08/jimmunol.1201483.DC1.html

References
This article cites 74 articles, 36 of which you can access for free at:
http://www.jimmunol.org/content/189/6/3007.full#ref-list-1

Subscriptions
Information about subscribing to The Journal of Immunology is online at:
http://jimmunol.org/subscriptions

Permissions
Submit copyright permission requests at:
http://www.aai.org/ji/copyright.html

Email Alerts
Receive free email-alerts when new articles cite this article. Sign up at:
http://jimmunol.org/cgi/alerts/etoc
Globosides but Not Isoglobosides Can Impact the Development of Invariant NKT Cells and Their Interaction with Dendritic Cells

Stefan Porubsky,*† Anneliese O. Speak,‡ Mariolina Salio,§ Richard Jennemann,* Mahnaz Bonrouhi,* Rashad Zafarulla,¶ Yogesh Singh,§ Julian Dyson,¶ Bruno Luckow,‖ Agnes Lehuen,# Ernst Malle,** Johannes Mühling,**†† Frances M. Platt,‡ Vincenzo Cerundolo,§ and Hermann-Josef Gröne*

Recognition of endogenous lipid Ag(s) on CD1d is required for the development of invariant NKT (iNKT) cells. Isoglobotrihexosylceramide (iGb3) has been implicated as this endogenous selecting ligand and recently suggested to control overstimulation and deletion of iNKT cells in α-galactosidase A-deficient (αGalA−/−) mice (human Fabry disease), which accumulate isoglobosides and globosides. However, the presence and function of iGb3 in murine thymus remained controversial. In this study, we generate a globotrihexosylceramide (Gb3)-synthase-deficient (Gb3S−/−) mouse and show that in thymi of αGalA−/−/Gb3S−/− double-knockout mice, which store isoglobosides but no globosides, minute amounts of iGb3 can be detected by HPLC. Furthermore, we demonstrate that iGb3 deficiency does not only fail to impact selection of iNKT cells, in terms of frequency and absolute numbers, but also does not alter the distribution of the TCR CDR 3 of iNKT cells. Analyzing multiple gene-targeted mouse strains, we demonstrate that globoside, rather than iGb3, does not only fail to impact selection of iNKT cells, in terms of frequency and absolute numbers, but also does not alter the distribution of iNKT cell numbers and impeded Ag presentation on DCs. The Journal of Immunology, 2012, 189: 3007–3017.

Natural killer T cells represent a discrete T cell population expressing TCR αβ together with NK cell surface markers such as NK1.1 (CD161) (1). A subset of NKT cells expresses an invariant TCR α-chain (Vα14-Jα18 in mouse and Vα24-Jα18 in human) with a restricted set of TCR β-chains (Vβ2, Vβ7, and Vβ8.2 in mouse and Vβ11 in human) and is thus referred to as invariant NKT (iNKT or type I NKT) cells (2–5). Although constituting <1% of mouse lymphocytes, iNKT cells have repeatedly been shown to play an important role in tumor surveillance, in establishing peripheral tolerance, and also in defense against infections (6–10).

Unlike MHC class I (MHC I)- and II (MHC II)-restricted T cells, iNKT cells recognize exogenous and endogenous lipid Ags presented by nonpolymorphic MHC I-like CD1 molecules (11, 12). Several exogenous microbial lipid and glycolipid Ags recognized by iNKT cells have been identified (13, 14). The prototypical iNKT cell agonist is α-galactosylceramide (αGalCer, also referred to as KRN7000), a glycosphingolipid (GSL), which is derived from the marine sponge Agelas mauritanius (15, 16). αGalCer represents a specific and strong ligand for iNKT cells eliciting a rapid release of Th1- and Th2-type cytokines in large amounts.

Although conventional T cells require presentation of peptide Ags on MHC I or II molecules of cortical epithelial cells, positive selection of iNKT cells requires the presentation of an endogenous lipid Ag by CD1 molecules of double-positive (CD4+CD8+) cortical thymocytes (17). CD1d deletion or aberrant trafficking due to a mutation in its cytoplasmic tail interferes with the positive thymic selection of iNKT cells with the consequence of diminished iNKT cell numbers (18, 19). Nevertheless, CD1d molecules alone are not sufficient for the positive selection of iNKT cells, because sphingolipid activator proteins and lysosomal proteases are also indispensable for normal iNKT cell selection (20, 21), suggesting that a lipid self-Ag(s) is loaded onto CD1 to enable...
positive selection of iNKT cells (12, 22). On the basis of the amino acid sequence, the five members of the human CD1 family have been assigned to either group I, which comprises CD1a, -b, -c, and -e molecules, or group II, which consists of the CD1d molecule. Unlike humans, mice lack group I CD1 molecules and have two group II CD1 genes termed Cd1d1 and Cd1d2, from which only Cd1d1 seems to encode for a functional protein (23). A variety of endogenous lipids have been demonstrated to be captured by CD1d on the secretory pathway or during endosomal–lysosomal recycling (22), the majority of them being phospholipids (including diacyl- and lyso-species, cardiolipins, and plasmalogen) or sphingolipids (sphingomyelin and glycosphingolipids) (24–27). However, most iNKT cells do not respond to these lipids, and the reactivity toward them is restricted to singular iNKT cell clones (28).

On the basis of the observation that cells deficient in glucosylceramide (GlcCer) based GSL (Fig. 1) are unable to stimulate iNKT cell hybridomas, it was suggested that the endogenous selecting ligand might be a GSL (29). Reduced iNKT cell numbers in mice deficient in the β-subunit of β-hexosaminidase (Hexb−/−, Sandhoff storage disease; Fig. 1) together with the well documented in vitro stimulatory capacity of isoglobotrihexosylceramide (iGb3) toward iNKT cells led to the conclusion that iGb3 is the endogenous lipid ligand responsible for the positive selection of iNKT cells (30, 31). However, previously, we demonstrated that iGb3-synthase-deficient (iGb3S−/−) mice have normal iNKT cell numbers and do not show a functional phenotype (32), suggesting that iGb3 is unlikely to be the only endogenous iNKT cell ligand. Also, the presence of isoglobosides and iGb3 in murine thymus remains highly controversial: mass spectrometry showed the presence of iGb3 in murine thymus (33), whereas a highly sensitive HPLC failed to detect the iGb3 in the murine thymus, a possible reason for this being that the major globotrihexosylceramide (Gb3) peak masked the putatively very low levels of iGb3 (34). Recently, it has been demonstrated that peroxisomal ether-bonded monoalkyl glycerophosphatidylethanolamines are potent activators of iNKT cells and that mice with absence of glycerophosphatidylethanolamine O-acyltransferase, the enzyme generating these lipids, show an altered thymic iNKT cell development (35).

Recognition of endogenous lipid Ags is also important for the function of peripheral iNKT cells, which are, however, capable of indirect activation without the need for recognition of CD1d-presented microbial lipid Ags (36). According to this concept, iNKT cell activation is mediated by upregulation and presentation of endogenous lipid Ags on CD1d upon recognition of microbial danger signals by APCs, in concert with cytokines such as IL-12 (37, 38). Even in this setting, the identity of the endogenous lipid (s) has not been fully elucidated. iGb3 was originally implicated in iNKT cell activation by TLR ligand-activated dendritic cells (DCs) (39), and it has been argued that in α-galactosidase A-deficient mice (αGalA−/−, Fabry lysosomal storage disease; Fig. 1) iGb3 accumulation is responsible for overstimulation and decreased numbers of peripheral iNKT cells (40). However, more recently, GlcCer has been proposed as a relevant endogenous lipid Ag-activating iNKT cell activation in response to microbial danger signals (41).

In the current study, we have generated Gb3-synthase-deficient (Gb3S−/−) mice and used them in combination with αGalA−/− storage mice, which enabled the accumulation of isoglobosides without globosides (Fig. 1). This allowed us to detect minute amounts of iGb3 in thymi of αGalA−/−/Gb3S−/− mice. In view of this finding, we reanalyzed in detail the TCR repertoire of iNKT cells developing (in normal frequencies) in iGb3S−/− mice and demonstrated that they express a typical iNKT TCR repertoire
Moreover, comparison of αGalA-/-/Gb3S-/ and αGalA-/-/Gb3S-/ mice showed that it is not the accumulation of iGb3 but rather the storage of globo sides that is responsible for the decreased iNKT cell numbers and altered Ag presentation on DCs in αGalA-/-/Gb3S-/- storage mice. This study shows, therefore, that despite its presence in thymus, iGb3 does not mediate the positive selection of iNKT cells, and neither is it the endogenous ligand responsible for the interaction between DCs and iNKT cells in the periphery.

Materials and Methods

Generation of Gb3S-/- mice

Clone MPMMcIc12117724Q5 from the 129/Ola mouse genomic cosm id library number 121 from the German Resource Center for Genome Re searc h (Berlin, Germany). The coding sequence of exon 3 was then replaced by a loxp-flanked neomycin selection cassette (loxp-PGK-gb2-loxp cassette; Gene Bridges). The deleted Gb3S sequences extended from position 83,057,694 to 83,059,066 (Fig. 2A). The targeting vector was electroporated into E14 embryonic stem cells, and 384 G418-resistant clones were picked, expanded, and characterized by Southern blot analysis using the primers: 5'-GCT TGT CTT CTG CGA C-3' and 5'-GAG AAT ACC ACC CAA TAC AAG C-3'; and 5'-TG CTT GTA TCG TTC TCT AAC-3', respectively. Two positive ES cell clones were detected and microinjected into C57BL/6 mice following primers: 5'-GAG ATG GCA GGA TTA GCT AAC AAG AC-3', 5'-GCC GCT TCT GAC TCT TTC TTG ACC-3', and 5'-GAA TTC ACC TTC CTC AGC ATT TC-3' (2048 bp before and 498 bp after deletion; Fig. 2C). Mice deficient for Gb3S were provided by National Institutes of Health Tetramer Core Facility at Emory University (Atlanta, GA). Flow cytometry was performed as previously described (34) using the following mAbs: anti-CD1d (clone 1B1; BD, Heidelberg, Germany), anti-CD11c (HL3), anti-CD3ε (54-2931, 2.4.1, 2.4.1.122) were purchased from BioService (Kyoto, Japan). All strains were housed under specific pathogen-free conditions. All animal experiments were performed under pathogen-free conditions. All animal experiments were performed in accordance with the German guidelines on animal protection and were approved by the local authority.

Organ preparation and flow cytometry

Single-cell preparations from organs were prepared as described previously (32). αGalCer-loaded PE-labeled CD1d tetramers were purchased from Proimmune (Oxford, U.K.). PBS57-loaded PE-labeled CD1d tetramers were provided by National Institutes of Health Tetramer Core Facility at Emory University (Atlanta, GA). Flow cytometry was performed as previously described (32) using the following mAbs: anti-CD1d (clone 1B1; BD, Heidelberg, Germany); anti-CD3ε (145-2C11), anti-CD11c (HL3), anti-CD19 (MB9-1), anti-CD44 (B7), and anti-MHCII (M5/14.15.2) (all from BioLegend, CA); anti-Gb3 (CD77, 38-13) in combination with anti-rat IgM (both from Gen Tex, Irvine, CA). Analysis of flow cytometry data was performed using Cell Quest Pro software (BD) by gating on lymphocytes in the forward and side scatter.

In vitro experiments with DCs and iNKT cells

DCs were isolated from spleens by anti-CD11c microbeads (Miltenyi Biotec, Bergisch Gladbach, Germany) and plated at 50,000/well in 100 μl medium (RPMI 1640 with 10% FCS, 1% penicillin/streptomycin, 1% glutamine, 1% nonessential amino acids, 1% sodium pyruvate, and 1% HEPES) in 96-well plates (Greiner Bio-One, Frickenhausen, Germany). αGalCer (Avanti Polar Lipids, Alabaster, AL) was applied overnight followed by thorough washing. Heat-killed Escherichia coli were prepared from overnight cultures by exposure to 70°C for 2 h and applied overnight on DCs at a bacteria/DC ratio of 10:1 followed by thorough washing. iNKT cells were enriched from livers of TCRα14.1-Je281 transgenic mice using anti-CD5 micro beads (Miltenyi Biotec) and purified flow throughs containing iNKT cells were applied to 100 μl medium as above. IFN-γ was measured by cytometric bead array technique (BD) after coculturing DCs and iNKT cells for 24 h in case of αGalCer presentation or 5 d in case that the interaction with DCs stimulated with heat-killed bacteria was assessed. OVA presentation toward MHC I- and II-restricted T cell hybridomas was tested as described previously (35). For cellular experiments, whole bone marrow-derived DCs (BMDCs) were prepared as described previously (51). Cells were incubated with 50 μg/ml acetylated low-density lipoprotein (AcLDL) overnight followed by thorough washing. AcLDL was prepared following treatment of native LDL isolated as previously described (52) by multiple 2-μl aliquots of acetic anhydride (53).

Spectratyping

Thymic iNKT cells were enriched using 2 μl PBS57-loaded PE-labeled CD1d tetramers (National Institutes of Health Tetramer Core Facility at Emory University) in a total volume of 200 μl PBS with 1% BSA and 2 mM EDTA at room temperature for 30 min. After washing, the cell pellet was incubated with 10 μl anti-PE microbeads (Miltenyi Biotec) at 4°C for 15 min. Enrichment was performed according to the manufacturer’s instruction using MS columns (Miltenyi Biotec). RNA was isolated using the acid phenol/chloroform extraction method (54). Generating genomic DNA was removed by digestion with RNase-free DNase (tRNA free; Ambion, Huntington, U.K.). The total amount of RNA was subjected to reverse transcription in a 20-μl volume using SuperscriptII (Invitrogen, Karlsruhe, Germany), according to the manufacturer’s instructions. For TCR sequencing, Vα14 and Vβ8.2 rearrangements were amplified using Vα14/Cα (5'-TCC TCG TGT TGG ACC AAA AAG AC-3' and 5'-CTT CCA GGA GGA GGA TAC-3') and Vβ8.2/Cb (5'-GTT GAC ATT GAG CTC TAA T-3' and 5'-AGA AGC CCC TGA CCA ACA A-3') primers, respectively. PCR products were cloned using the TA cloning kit (Invitrogen Life Technologies) and sequenced using the M13R primer. Spectratyping was described as performed using Vβ2, 7, and 8.2 primers in combination with CB or Jb primers (55).

HPLC

Glycolipid extraction, purification, ceramide glycanase digestion, and fluorescent derivatization were performed as described previously (34). Normal-phase HPLC was as previously described (34) with the exception that fluorescent detection was performed with a Waters 2475 detector (Waters, Milford, MA). Oligosaccharide standards for calibration were purchased from Dextra laboratories (Reading, U.K.). Green coffee bean α-galactosidase (axl-3, 4 and 6) was purchased from Glyko Prozyme (Hayward, CA), and 50 μM was used per digest for 48 h with samples prepared for HPLC as described previously (34).

Isolation of neutral GSL

Freshly harvested spleens and kidneys were frozen in liquid nitrogen and lyophilized. Tissues were powdered, and dry weight was determined. GSL were extracted with 2 ml CHCl3/CH3OH/H2O 10:10:10 v/v/v under sonication for 15 min. After 30 min incubation at 50°C, supernatants were collected, and the pellets were extracted again first with 2 ml CHCl3/CH3OH/H2O 10:10:10 v/v/v and then with CHCl3/CH3OH/H2O (30:60:8, v/v/v). Supernatants were combined and dried under a stream of air. Crude extracts were treated with 1 ml 0.1 M KOH in CH3OH at 50°C for 4 h to eliminate phospholipids and triglycerides. After neutralization with acetic acid and evaporation of CH3OH, potassium acetate was removed from lipids via reversed-phase column chromatography (RP18): small glass pipettes were filled with 200 μl silicagel RP18 material (Waters) preconditioned with 2 ml each of CH3OH, CH3O, and 0.1 M potassium acetate in H2O. Lipid extracts were suspended in 1 ml H2O and applied to the columns. After washing with 4 ml H2O, lipids were eluted with 4 ml methanol and dried. For the separation of GSL into neutral and acidic (sialic acid-containing) components by ion exchange chromatography, glass pipettes were filled with 200 μl Sephadex A25 (GE Healthcare, Uppsala, Sweden). Columns were pre-conditioned with 2 ml CH3OH. The lipid extracts were solved in 2 ml CH3OH and applied to the columns. Flow throughs containing neutral GSL were collected and concentrated to dryness under vacuum. After derivatization with acetic anhydride, the samples were analyzed by HPLC using the described method.
were collected. Neutral GSL were eluted from the columns with additional 4 ml CH₃OH and acidic GSL with 2 ml 0.5 M potassium acetate in CH₃OH. Neutral GSL were thoroughly dried and kept for several hours in a vacuum desiccator. GSL were solved in 200 µl dichloroethane (DCE) and acetylated by the addition of 50 µl acetic anhydride and 50 µl 0.1% dimethylaminopyridine in DCE at 37˚C for 1 h. The reaction solvents were evaporated under a N₂ stream by the addition of 200 µl toluene, three times. Glass pipettes were filled with 400 µl Florisil (Merck, Darmstadt, Germany) and washed with 4 ml DCE/α-hexane (4:1, v/v). The acetylated neutral GSL were solved in the same solvent mixture and applied to the columns followed by washing steps with DCE/α-hexane (4:1, v/v) and DCE, 4 ml each. GSL were eluted from columns with 4 ml DCE/acetone (1:1, v/v) and dried. To remove acetyl groups from sugar moieties, neutral GSL were solved in 0.1 M KOH in CH₃OH and incubated at 37˚C for 2 h. After neutralization with acetic acid, the purified neutral GSL were dried and desalted by RP18 column chromatography as described above.

Thick layer chromatography

Neutral GSL were isolated from kidneys and spleens. An amount corresponding to 2 mg dry organ weight was loaded twice on two halves of a TLC plate (Merck). Running solvent was CHCl₃/CH₃OH/H₂O (62.5:30:6, v/v/v). The TLC plate was divided into two halves, and one part was sprayed with 0.2% orcinol in 10% sulfuric acid at 120˚C for 10 min to visualize the GSL. The second part was used for anti-Gb3 immunostaining. For this purpose, the silicagel layer was fixed by dipping into a solution of 5% Tween20 in PBS, alkaline phosphatase-conjugated polyclonal donkey anti-Gb3 Ab JM06/298-1 (56) was diluted 1:1000 in 1% BSA in PBS, and the plate was incubated overnight at 4˚C. After intense washing with 0.05% Tween20 in PBS, alkaline phosphatase-conjugated polyclonal donkey anti-chicken IgY secondary Ab (Jackson ImmunoResearch Europe, Suffolk, U.K.) was added (1:200 in 1% BSA in PBS) and applied for 3 h at room temperature. Gb3 was visualized after a repeated washing step with 5-bromo-4-chloro-3-indolyl phosphate (Sigma-Aldrich, Munich, Germany) for 5 min at room temperature.

Electron microscopy

Organs were fixed in Karnovsky’s glutaraldehyde (2% paraformaldehyde, 2.5% glutaraldehyde, and 0.2M cacodylate buffer [pH 7.4]) and embedded in araldite (Serva, Heidelberg, Germany). Ultrathin sections were stained with lead citrate and uranyl acetate. Photographs were taken on an electron microscope (Zeiss EM 910; Carl Zeiss, Oberkochen, Germany).

FIGURE 2. Generation of Gb3S^{−/−} mice. (A) Targeting strategy showing murine Gb3S WT locus, targeting vector, and the targeted locus before and after Cre-mediated recombination together with HindIII restriction sites and probes for Southern blot analysis. Coding and noncoding regions of exons 2 and 3 are depicted as filled and open boxes, respectively. Homology arms are shown as bold lines. Arrowheads show the position and orientation of PCR primers. Triangles flanking the PKG-gb2-neomycin selection cassette (neo) symbolize loxP sequences. (B) Southern blot analysis of the genomic DNA from embryonic stem cells using 5’ and 3’ external probes, as indicated in (A), showed shortening of the diagnostic 22.2-kb-long HindIII fragment present in WT (+/+), to 9.4 and 13.1 kb, respectively, after homologous recombination (+/neo). (C) Cre-mediated deletion of the neomycin selection cassette was confirmed by PCR using forward (F2) and reverse (R2) primers as a shortening of the 2048-bp-long product to 498 bp. neo/neo and −/− represent homozygous animals with targeted loci before and after Cre-mediated deletion of the neomycin selection cassette. (D) TLC analysis of neutral GSL isolated from kidneys of WT (+/+) and Gb3S-deficient (−/−) mice showed absence of Gb3 and its downstream products such as Gb4. As a consequence, the precursor substance lactosylceramide (LacCer) was increased as standard (std.), an extract of neutral GSL from human spleen was used. HexCer, hexosylceramide.

Results

Gb3 is present in extremely low amounts in the murine thymus

Using a highly sensitive HPLC method, we previously investigated the presence of isoglobosides, in particular iGb3, in various murine tissues (34). Despite the high sensitivity of this method, the only murine tissue with detectable iGb3 levels was the dorsal root ganglion. iGb3 was not detected in the thymus in either wild-type (WT) or αGalA^{−/−} mice (murine model of Fabry lysosomal storage disease) in which accumulation of isoglobosides—together with globosides—was expected (Fig. 1). However, the iGb3 peak might have remained undetected because of overlap with the more abundant Gb3 peak.

Therefore, to circumvent this obstacle, we have now generated Gb3S^{−/−} mice (Fig. 2). TLC of kidney extracts, which are rich in globosides in WT mice, showed absence of Gb3 and its derivatives such as Gb4 in Gb3S^{−/−} mice, thereby demonstrating the successful targeted inactivation of the Gb3S gene (Fig. 2D).

Using the HPLC method previously reported (34), no iGb3 could be detected in the thymus of Gb3S^{−/−} mice despite the absence of Gb3 (Fig. 3A); however, there was still a peak that comigrated with Gb3 and had a neutral charge in the Gb3S^{−/−} and is as yet unidentified. To increase the amounts of iGb3 present in tissues yet without Gb3 accumulation, αGalA^{−/−} mice were crossed with Gb3S^{−/−} mice to promote the storage of iGb3 if present. By this approach, a minute peak at the level of the iGb3 standard could be detected in αGalA^{−/−}/Gb3S^{−/−} mice (Fig. 3B). Consistent with it being iGb3, this peak was also susceptible to α-galactosidase digestion (Fig. 3C) and was absent in triple αGalA^{−/−}/Gb3S^{−/−}−/Gb3S^{−/−} knockout mice (Fig. 3D). Taking into account the number of thymocytes processed for this analysis, this peak detected in αGalA^{−/−}/Gb3S^{−/−} mice corresponded to

Statistical analysis

Unpaired two-tailed Student t test was performed to compare data sets. Differences were considered significant if p < 0.05. Numbers of independent observations per group are indicated for each result.
FIGURE 3. HPLC analysis of thymi demonstrated the presence of minute amounts of iGb3 in aGalα1–3Galβ3−/− mice. Single-cell suspensions were prepared from murine thymi. After the cell number was determined, homogenates were processed for HPLC. (A) In both heterozygous controls and Galβ3−/− mice, iGb3 was undetectable in thymus. (B) The presence of iGb3 could be documented in thymi of aGalα1–3Galβ3−/− mice, which accumulated only isoglobosides but no globosides. (C) The iGb3 peak was fully susceptible to α-galactosidase digestion. In contrast, the peak comigrating with Gb3 was unsusceptible to α-galactosidase digestion. (D) The iGb3 peak was absent in aGalα1–3Galβ3−/−/Gb3−/− triple-knockout mice.

1619 ± 380 molecules of iGb3 per thymocyte (mean ± SEM, n = 3) in this genetically manipulated cross.

iGb3−/− mice express a typical iNKT TCR repertoire

Previously, we have shown that iGb3−/− mice backcrossed for four generations to the C57BL/6 genetic background had normal iNKT cell frequencies (32). These results could now be verified after further backcrossing of the iGb3−/− mice for >10 generations to the C57BL/6 genetic background (data not shown). Given the normal numbers of iNKT cells in iGb3-deficient mice, we hypothesized that the absence of iGb3 during the process of positive selection might still be reflected by a change in the CDR3 regions of their TCR α and β-chains. To test this hypothesis, mRNA was isolated from enriched thymic iNKT cells of iGb3−/− and control (iGb3+−) mice. Vα14 chains were amplified by PCR using Vα14 and Cα constant region primers. The canonical iNKT Vα14-Jα8.2 CDR3 sequence was dominant in both iGb3−/− mice (22 of 23 sequences) and control mice (17 of 18 sequences) (Fig. 4A). In each case, only one variant was seen, which differed by a single amino acid at the same position. In the case of iGb3−/−, the variant has been previously reported in the iNKT repertoire of WT C57BL/6 mice (4). Murine iNKT cells use Vβ2, 7 and 8.2 in combination with the canonical Vα14-Jα18 α-chain. These TCR β-chains were amplified by PCR using Vβ-specific primers in combination with Cβ or, to analyze smaller components of the repertoire, with β-chain-specific primers. Spectratyping of the PCR products showed highly similar CDR3 length distributions for iGb3−/− and control iNKT cells (Fig. 4B; data not shown). Finally, sequencing of Vβ8.2 CDR3 regions showed similar β chain segment use (Fig. 4C) and CDR3 diversity (data not shown) within iGb3−/− and control iNKT cells. Overall, these data are consistent with iGb3 presence or absence having minimal impact on the iNKT TCR repertoire, although a minor role for iGb3 in shaping TCR β CDR3 composition cannot be excluded.

Absence of globosides and subgroups of gangliosides did not influence iNKT cell numbers

In view of the fact that Gb3, in contrary to iGb3, is abundantly present in human, mouse, and rat tissues and was also found in lipid eluates from soluble murine CD1d (25), we tested whether the absence of Gb3 would impact iNKT cell development. However, depletion of globosides either alone or in combination with isoglobosides did not alter the frequency of iNKT cells in the thymus, spleen, or liver (Supplemental Fig. 1A). Similarly, depletion of subgroups of gangliosides in mice deficient in GM3-synthase (GM3S), GD3-synthase (GD3S), and GalNac-transferase (GalNAcT) had no effect on the iNKT cell population (Supplemental Fig. 1B).

Absence of globosides but not of isoglobosides was able to revert the iNKT cell phenotype of aGalα1–3Galβ3−/− storage mice

It has been suggested by Darmoise et al. (40) that the lowered numbers of iNKT cells in aGalα1–3Galβ3−/− mice may be due to the accumulating iGb3, which, by overstimulation of iNKT cells, would lead to their apoptosis. We tested this hypothesis directly by crossing the aGalα1–3Galβ3−/− mice with iGb3−/− mice. In case that the accumulation of iGb3 would be indeed responsible for the lowered iNKT cell numbers in aGalα1–3Galβ3−/− mice, then iNKT cell numbers would be expected to return to WT levels in the aGalα1–3Galβ3−/−/iGb3−/− double-knockout mice.

In line with previous reports, aGalα1–3Galβ3−/− mice showed a significant reduction of the iNKT cell populations both in spleen and liver in comparison with WT mice (Fig. 5A). In the thymus, this reduction reached statistical significance in terms of absolute iNKT cell numbers. However, in aGalα1–3Galβ3−/−/iGb3−/− mice, iNKT cell numbers were reduced to the same extent as in aGalα1–3Galβ3−/− mice (Fig. 5A). In contrast, normalization of the iNKT cell numbers to levels indistinguishable from those in WT mice...
could be achieved by depletion of globosides in αGalA−/−/Gb3S−/− mice (Fig. 5A). The expression of CD1d on double-positive (CD4+/CD8+) thymocytes or splenic DCs (CD11c+/MHCII+) did not differ from WT in any of these genotypes (Fig. 5B).

The normalization of iNKT cell number in αGalA−/−/Gb3S−/− but not in αGalA−/−/Gb3S−/− mice suggested that the storage of globosides, rather than the accumulation of iGb3, is responsible for the reduction of iNKT cells in αGalA−/− mice. To prove this, we performed further biochemical analyses of spleen tissue from these mice. In parallel, we also analyzed kidneys in which globose GSL (Fig. 1) is present. As expected, accumulation of Gb3 and GalCer was detected in spleens and kidneys of αGalA−/− mice (Fig. 6A, 6B). Deletion of Gb3S did not alter either the amount or composition of GSL stored in αGalA−/−/Gb3S−/− mice. In contrast, in αGalA−/−/Gb3S−/− mice, deletion of Gb3S abolished the accumulation of GSL (Fig. 6A, 6B). Comparison of the GSL patterns between αGalA−/−/Gb3S−/− and Gb3S−/− mice demonstrated that no GSL other than those dependent on Gb3S accumulated in αGalA−/−/Gb3S−/− (and αGalA−/−) spleens and kidneys, as detected by TLC (Fig. 6A, 6B).

Electron microscopy further revealed that in αGalA−/− splenocytes accumulation of GSL led to a severe disturbance of lysosomal morphology with numerous enlarged lysosomes filled with lamellar inclusions (Fig. 6C). In line with the TLC findings (Fig. 6A, 6B), this alteration was found also in αGalA−/−/Gb3S−/− but not in αGalA−/−/Gb3S−/− splenocytes (Fig. 6C).

In αGalA−/− splenocytes, GSL storage led to severe impairment of Ag presentation independently of the presence of isoglobosides

On the basis of the severe structural derangement in αGalA−/− splenocytes (Fig. 6C), we speculated that an impairment of Ag presentation caused by lysosomal storage could be the reason for decreased iNKT cell numbers in spleens and livers of these mice. To this end, we have tested the Ag-presenting capacity of DCs enriched from spleens. DCs from αGalA−/− and αGalA−/−/Gb3S−/− were also affected by the storage of Gb3, as shown by flow cytometry with anti-Gb3 Abs (Fig. 7A). The ability of DCs...
Globosides were the major GSL stored in aGalA−/− splenocytes leading to a severe lysosomal derangement. (A) TLC analysis of neutral GSL from spleens and kidneys of WT, aGalA−/−, aGalA−/−/Gb3S−/−, aGalA−/−/Gb3S−/−, and Gb3−/− mice. In the spleens and kidneys of aGalA−/− storage mice, the major accumulating GSL run at the height of Gb3. Additional deficiency for Gb3S did not affect the composition of neutral GSL in aGalA−/−/Gb3S−/− mice. In contrast, in aGalA−/−/Gb3S−/− mice, the accumulation of globosides (and galabiosylceramide, GalCer, in kidney) was absent. An extract of neutral GSL from human spleen was used as a standard and orcinol staining was performed for visualization. Heterogeneity in the capacity of storage by depletion of globosides restored the Ag-presenting capacity of WT mice (Fig. 7B). However, counteracting the decrease of this interaction when coincubating iNKT cells and exogenous iNKT cell Ag by DCs that had been pre-exposed to heat-killed E. coli (Fig. 2B, 2C). It has been shown that GSL storage leads to intracellular cholesterol accumulation (57, 58). We hypothesized that cholesterol/cholesteryl ester overload might be one mechanism responsible for the disturbed Ag presentation in aGalA−/− (and also in aGalA−/−/iGb3S−/−) DCs. To test this, we induced cholesterol overload by exogenous administration of acLDLs to WT BMDCs and investigated their Ag presentation capacity. Cellular lipid accumulation could be documented by Oil Red O stain (Supplemental Fig. 2A) and caused a significant decrease both in aGalCer presentation and in OVA presentation and cross-presentation (Supplemental Fig. 2B, 2C).

FIGURE 6. Globosides were the major GSL stored in aGalA−/− splenocytes leading to a severe lysosomal derangement. (A) TLC analysis of neutral GSL from spleens and kidneys of WT, aGalA−/−, aGalA−/−/Gb3S−/−, aGalA−/−/Gb3S−/−, and Gb3−/− mice. In the spleens and kidneys of aGalA−/− storage mice, the major accumulating GSL run at the height of Gb3. Additional deficiency for Gb3S did not affect the composition of neutral GSL in aGalA−/−/Gb3S−/− mice. In contrast, in aGalA−/−/Gb3S−/− mice, the accumulation of globosides (and galabiosylceramide, GalCer, in kidney) was absent. An extract of neutral GSL from human spleen was used as a standard and orcinol staining was performed for visualization. Heterogeneity in the composition of fatty acid moieties results in some GSL (e.g., Gb3) running as multiple bands (74). (B) A TLC plate with renal neutral GSL, which was run in parallel with the one shown in (A), was immunostained with polyclonal Gb3-specific Ab JM06/298-1 (56), which identified the majority of the GSL from spleens and kidneys of WT, aGalA−/−, aGalA−/−/Gb3S−/−, aGalA−/−/Gb3S−/−, and Gb3−/− mice. The spleens and kidneys of WT, aGalA−/−, aGalA−/−/Gb3S−/−, aGalA−/−/Gb3S−/−, and Gb3−/− mice were characterized by severely distorted lysosomal architecture with multiple enlarged lysosomes containing abundant lamellar inclusions. This was the case also when isoglobosides were depleted in aGalA−/−/Gb3S−/− mice. However, in aGalA−/−/Gb3S−/− mice, the depletion of globosides restored the lysosomal architecture to a state morphologically indistinguishable from WT. Scale bar, 1 μm. N, Nucleus.
Discussion

iGb3 has been proposed to be the endogenous ligand essential for thymic iNKT cell development (31). Although expression of iGb3S mRNA has been repeatedly documented in murine tissues including thymus (51, 59), the presence of iGb3 in murine thymus has remained controversial. This is based mainly on the fact that iGb3 and Gb3 are isomers differing solely in the glycosidic linkage of the terminal galactose moiety (Fig. 1), which makes a sensitive discrimination between iGb3 and the much more abundant Gb3 technically extremely challenging. Using a highly sensitive HPLC assay, which allowed detection of iGb3 when present at 1% of the Gb3 level, iGb3 could not be detected in murine thymus.

Figure 7. DCs from αGalA^{-/-} mice showed a profound defect in Ag presentation including a weaker induction of antimicrobial response by iNKT cells. (A) Splenic DCs (enriched by anti-CD11c magnetic beads), which were used for all further experiments, were stained with rat monoclonal IgM anti-Gb3 primary Ab (clone 38-13) in combination with FITC-labeled anti-rat IgM secondary Ab. Flow cytometry demonstrated that Gb3 was expressed at low levels in WT but accumulated extensively in αGalA^{-/-} DCs. This accumulation was absent in αGalA^{-/-}/Gb3S^{-/-} but not in αGalA^{-/-}/Gb3S^{-/-} DCs. Bars, means ± SEM; n = 3/group. (B) In splenic DCs, Ag presentation by CD1d was assessed by exposure to different αGalCer concentrations, followed by coincubation with WT iNKT cells. Presentation of αGalCer on αGalA^{-/-} DCs was significantly diminished throughout the whole range of concentrations tested. Similarly, αGalA^{-/-}/Gb3S^{-/-} DCs showed an impaired αGalCer presentation. This derangement could be returned to normal after depleting the stored globosides in αGalA^{-/-}/Gb3S^{-/-} DCs. CD1d^{2/-} DCs served as negative controls. Shown are means ± SEM; n = 4/group. (C) DC-mediated microbial activation of iNKT cells was tested by applying heat-killed E. coli to DCs, followed by coincubation with WT iNKT cells. As for αGalCer, the activation capacity of αGalA^{-/-} and αGalA^{-/-}/Gb3S^{-/-} DCs was significantly lower in comparison with WT, and only the abrogation of storage could restore normal function in αGalA^{-/-}/Gb3S^{-/-} DCs. In iGb3S^{-/-} DCs, the microbe-elicited activation of iNKT cells was unaffected. CD1d^{2/-} and MyD88^{2/-} DCs served as negative controls. Bars, means ± SEM; n = 4/group. (D) The ability of splenic DCs to process and (cross)-present OVA was investigated. To this end, OVA-exposed DCs from the indicated phenotypes were allowed to interact with MHC II- or MHC I-restricted WT T cell hybridomas, and supernatant IL-2 was measured. Both Ag presentation and cross-presentation activity was significantly disturbed on αGalA^{-/-} and αGalA^{-/-}/Gb3S^{-/-} DCs in comparison with WT. DCs from αGalA^{-/-}/Gb3S^{-/-} mice showed an unaltered Ag (cross)-presentation activity. Bars, means ± SEM; n = 3/group. **p < 0.01, ***p < 0.001.

iGb3 and Gb3 are isomers differing solely in the glycosidic linkage of the terminal galactose moiety (Fig. 1), which makes a sensitive discrimination between iGb3 and the much more abundant Gb3 technically extremely challenging. Using a highly sensitive HPLC assay, which allowed detection of iGb3 when present at >1% of the Gb3 level, iGb3 could not be detected in murine thymus.
murine thymus in WT mice (34). In contrast, analyzing murine thymi by electrospray ionization-linear ion trap-mass spectrometry (ESI-LIT-MS) Li et al. (33) were able to document signals that could be attributed to iGb3 in an iGb3/Gb3 ratio of 0.4%.

To solve this discrepancy, we have generated a Gb3S−/− mouse (Fig. 2) enabling us to address the presence of iGb3 in the absence of its isomer Gb3. To further increase the amounts of the putatively present iGb3, we crossed Gb3S−/− mice with aGalA−/− mice (murine model of Fabry disease, unable to degrade Gb3 and iGb3, resulting in their supraphysiological levels; Fig. 1). This approach allowed us to detect ∼1600 molecules of Gb3 per thymocyte in aGalA−/−/Gb3S−/− mice (Fig. 3), demonstrating that iGb3 can be synthesized in murine thymus although it does not indicate whether iGb3 is present under physiological conditions in this organ. This is because this genotype represents an extreme situation, as Gb3 deletion causes an increase of LacCer (Fig. 2D), which is also the substrate for iGb3S, and furthermore, once synthesized, iGb3 cannot be degraded because of aGalA deficiency in these mice. In agreement with this, iGb3 has previously not been reported to be detectable in WT thymus using the same method (34) and was also not detectable in Gb3S−/− mice (murine model of Fabry disease, unable to degrade Gb3 and iGb3, resulting in their supraphysiological levels; Fig. 1). This hypothesis, we demonstrate that iNKT cell numbers are decreased because of aGalA deficiency in these mice. In agreement with this, iGb3 has previously not been reported to be detectable in WT thymus using the same method (34) and was also not detectable in Gb3S−/− mice (i.e., in the absence of storage (Fig. 3)). Moreover, these findings also lead to the conclusion that iGb3S is the only enzyme responsible for iGb3 synthesis because its trace quantities detected in aGalA−/−/Gb3S−/− mice were absent in aGalA−/−/Gb3S−/−/iGb3S−/− triple-knockout thymocytes, making the existence of an alternative pathway for iGb3 synthesis in mice very unlikely.

The amount of ∼1600 molecules of iGb3 per thymocyte in aGalA−/−/Gb3S−/− mice (and presumably even lower in WT) seems to be low in terms of structural biology. Nevertheless, it might still be enough to mediate a positive selection of iNKT cells because it has been shown that even a single Ag–MHC complex can elicit a response in conventional T cells (60, 61). Therefore, we readdressed the question of whether depletion of these small iGb3 amounts in congenic iGb3-deficient mice would alter the iNKT cell population. However, backcrossing iGb3S−/− mice >10 times to the C57BL/6 genetic background still did not result in any alteration in iNKT cell numbers in iGb3S−/− as compared with WT mice. We hypothesized that the absence of iGb3 might still be reflected by alterations in the CDR3 region, which is a part of the interface between the iNKT TCR and iGb3 loaded on CD1d molecules (62). However, the CDR3 region of iNKT cells was preserved despite the absence of iGb3 (Fig. 4), further strengthening the conclusion that iGb3 does not function as the decisive endogenous iNKT selecting ligand.

Brennan et al. (41) have recently shown that GlcCer itself (in particular containing the N-acetyl chain C24:1) is recognized by iNKT cells and that recognition of GlcCer-loaded CD1d molecules is responsible for activation of iNKT cells by DCs upon recognition of microbial danger signals. It still remains to elucidate whether GlcCer also plays a role as the endogenous lipid ligand in the process of thymic iNKT cell selection. However, considering GlcCer as the endogenous ligand for iNKT cell selection might be one explanation for the paradox that iNKT cell development remains unaffected by deficiency of particular GSL groups downstream of GlcCer in the biosynthetic pathway (Fig. 1). The in vivo proof of such a hypothesis would be technically very challenging because mice deficient in GlcCer-synthase (GCS, the enzyme responsible for GlcCer synthesis; Fig. 1) die early during embryogenesis, and working with a conditional knockout or GCS inhibitor is associated with residual traces of GlcCer (63, 64). An alternative explanation has been provided by Facciotto et al. (35) who have shown that peroxisome-derived ether-bonded monoalkyl glycerophosphates are important for iNKT cell development.

Interestingly, until now, alterations of the iNKT cell population have been documented only in mouse models in which the degradation but not the synthesis of GSLs was blocked. The mechanistic basis for this has been controversial. On the basis of the finding that iGb3 stimulated iNKT cells in vitro, Zhou et al. (31) attributed the decreased iNKT cell numbers in Hex−/− mice to decreased lysosomal Gb3 levels because these mice cannot degrade Gb4 to iGb3 (Fig. 1). However, a decrease in the iNKT cell population has been documented in multiple other mouse models of lysosomal GSL storage disease (including aGalA−/− mice irrespective of the specific genetic defect or lipid stored (65, 66), Darmoise et al. (40) have suggested that in aGalA−/− mice the linking mechanism might be an overstimulation and increased apoptosis of iNKT cells because of Gb3 accumulation, although the accumulation or presence of iGb3 has not been addressed directly. If iGb3 storage would indeed mediate the iNKT cell phenotype in aGalA−/− mice, then in aGalA−/−/Gb3S−/− mice the alterations would be predicted to return to normal. Contrary to this hypothesis, we demonstrate that iNKT cell numbers are decreased to the same extent in aGalA−/− and aGalA−/−/Gb3S−/− mice (Fig. 5), thus implicating strongly that iGb3 cannot be the explanation for the diminished iNKT cell numbers in aGalA−/− mice. Moreover, we have found a significant general reduction in the Ag-presenting capacity of aGalA−/− and aGalA−/−/Gb3S−/− splenic DCs (Fig. 7) and reason, in line with a previous publication (65), that all these phenomena are a consequence of storage per se. To prove this, we have performed ultrastructural and biochemical analysis of spleens and documented an accumulation and derangement of lysosomal morphology in both aGalA−/− and aGalA−/−/Gb3S−/− mice (Fig. 6). On TLC, the pattern of accumulated GSL remained identical in aGalA−/− and aGalA−/−/Gb3S−/− mice, with the major contributor to the storage being Gb3 (Fig. 6). Thus, to provide conclusive evidence that storage— and not the accumulation of iGb3—is the real reason for all the morphological and physiological derangements in the function of aGalA−/− DCs, we have crossed these mice with Gb3S−/− and demonstrated that aGalA−/−/Gb3S−/− mice, which are devoid of storage (Fig. 6), do not show any functional disturbance in Ag presentation or thymic selection of iNKT cells (Figs. 5, 7). In this context, it is interesting to note that recently Macedo et al. (67) reported that aGalA enzyme replacement corrected the iNKT cell deficiency in aGalA−/− mice; however, this approach does not allow to discriminate between the effects of the storage of globoseis and isogloboseis.

Previous studies have shown that cellular GSL storage may promote cholesterol accumulation (58, 68). Supporting evidence has been published by Glaros et al. (57) demonstrating that apolipoprotein A-I–mediated cholesterol efflux was inhibited in fibroblasts treated with lactosylceramide or a specific glucocerebrosidase inhibitor as well as in fibroblasts from patients with genetic GSL storage diseases (including aGalA deficiency). First indications that cholesterol metabolism may influence iNKT homeostasis were provided by Gadola et al. (65) who showed decreased iNKT cell numbers and a defect in aGalCer presentation in the murine model for Niemann–Pick disease type C1. Keeping in mind that Niemann–Pick disease type C1 mice store not only cholesterol but also GSLs, we tested whether the storage of cholesterol itself can impede Ag presentation and could show that in WT BMDCs cholesterol overload by AcLDL could hinder the presentation of peptide and lipid Ags (Supplemental Fig. 2) similarly to the phenotype seen in aGalA−/− and aGalA−/−/Gb3S−/− mice (Fig. 7). This is congruent with several other findings that imply that hypercholesterolemia and the presence of modified lipoproteins adversely affect the function of APCs (69–71), al-
though no difference in OVA presentation between unloaded and AcLDL-loaded BMDCs was observed by Packard et al. (72). On the basis of our results, we suggest that the cholesterol accumulation that accompanies GSL storage diseases may be one mechanism responsible for the described malfunctioning Ag presentation in αGalAα−/− and αGalAα−/−Gb3Sα−/− mice. Upon exposure to heat-killed E. coli, DCs from αGalAα−/− and αGalAα−/−Gb3Sα−/− mice showed a reduced stimulatory capacity toward iNKT cells in comparison with WT DCs. In contrast, in αGalAα−/−Gb3Sα−/− DCs, the iNKT cell stimulation remained undistinguishable from WT (Fig. 7C). Notably, there was no difference between WT and Gb3-deficient DCs in their iNKT cell stimulatory capacity upon exposure to heat-killed E. coli (Fig. 7C). This is in line with our previous results demonstrating that iGb3-deficient myeloid-derived suppressor cells can activate iNKT cells after TLR stimulation (73). Also, injection of iGb3, even at a 10-fold higher dose than αGalCer, did not elicit measurable IFN-γ and IL-4 levels in vivo (data not shown).

Altogether, these results indicate that iGb3, despite its presence in the thymus and its ability to weakly activate iNKT cells in vitro, is unlikely to play a major role in vivo during positive selection of iNKT cells in the thymus or to modulate TLR-mediated crosstalk between DCs and iNKT cells in the periphery. Instead, using a direct genetic approach these results demonstrate that as a consequence of lipid storage, the interaction of DCs and iNKT cells is disturbed irrespective of iGb3 accumulation or lack thereof and provide further evidence that this interaction is not mediated by iGb3.

Acknowledgments

We thank F. van der Hoeven and U. Kloz for blastocyst microinjection, S. Kaden for excellent technical assistance (all at the German Cancer Research Center, Heidelberg, Germany), the National Institutes of Health Tetheramer Core Facility at Emory University, Atlanta, GA, for providing PBS57-loaded CD1d tetramers, A. Kulkarni for providing CD1d-restricted TCR Core Facility at Emory University, Atlanta, GA, for providing PBS57-loaded CD1d tetramers, A. Kulkarni for providing αGalAα−/− mice, and R.L. Proia for providing mice deficient for GalNAc-transferase, GM3-synthase, and GD3-synthase.

Disclosures

The authors have no financial conflicts of interest.

References

44. Sango, K., O. N. Johnson, C. A. Kozak, and R. L. Proia. 1995. β1,4-Acet-

