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Inhibition of HIV-1 group M and O isolates by
fusion inhibitors

Raghavan Chinnadurai®, Jan Minch?, Matthias T.
Dittmar® and Frank Kirchhoff?

We examined the susceptibility of HIV-1 group M
and O isolates to the fusion inhibitors T-20 and
T-1249. Unexpectedly, HIV-1 O isolates were as
sensitive as group M viruses to inhibition by T-20

but were usually less susceptible to T-1249. Our
data suggest that T-20 has broad antiretroviral
activity and would be effective in individuals with
HIV-1 O infection. However, polymorphisms in
gp41 might affect the sensitivity of HIV-1 O to
second-generation fusion inhibitors.

The fusion inhibitor T-20 (enfuvirtide, fuzeon) is the first
of'a new class of antiretroviral drugs that are active against
HIV-1 variants resistant to protease and reverse trans-
criptase inhibitors [1,2]. T-20 is a 36-amino acid peptide
corresponding to the C-helix structure (HR-2) of the
HIV-1Lai subtype B gp41 sequence [3,4]. T-1249 is a
second-generation fusion inhibitor, which shows greater
antiviral potency than T-20 and is active against most
T-20-resistant HIV-1 isolates [5—7]. It encompasses 39
amino acids and is composed of gp41 HR-2 sequences
derived from HIV-1, HIV-2, and SIV. Both T-20 and
T-1249 inhibit HIV-1 entry by competitive binding of
HR-1 and preventing the formation of the fusion-active
six-helix hairpin structure [8]. Changes in the 36—45
amino acid domain of the HR-1 region, particularly in a
conserved 3 amino acid sequence (GIV) of gp41, can
confer drug resistance to T-20 [9—-11].

T-20 was optimized to block HIV-1 M subtype B strains
and T-1249 efficacy has mainly been demonstrated in
HIV-1 M infections [6,7]. It is not well known whether
fusion inhibitors are active against highly divergent HIV-1
O strains. Group O is mainly restricted to central Africa
but sporadic infections have been reported in Europe and
the USA [12,13]. Altogether, group O viruses have
infected several tens of thousands of individuals. On the
basis of gp41 sequence alignments it has been proposed
that HIV-1 O might be resistant to T-20 but sensitive to
T-1249 [14]. However, no phenotypic data have been
presented to validate this assumption.

To study their susceptibility to T-20 and T-1249 we
analysed six primary HIV-1 O isolates [15] and six group
M viruses. The non-B 92UG029, 98IN022, 92UG024
and 93BR 020 isolates [16] and the subtype B pYU-2 [17]
and pLAL2 [18] molecular clones have been obtained
through the AIDS Research and Reference Reagent
Program from Drs Beatrice Hahn, George Shaw and
Keith Peden. To determine the diversity within the HR-
1 and HR-2 regions we polymerase chain reaction
amplified and sequenced the gp41 region from HIV-1 O-
infected cells. All HIV-1 M and O variants except NL4-3
contain the GIV motif in HR-1 (Fig. 1a) [19]. Residues
36—45 of HR-1, important for T-20 inhibition [9-11],
were highly conserved except for changes of N42S in the
subtype A (92UG029) and C (98IN022) HIV-1 as well as
N42D in the group O HR-1 sequences. Notably, group
M and O gp41 sequences differ by changes of Q56R and
T58S in the deep hydrophobic groove of HR-1, which
is important for HR-2 binding [20], and is targeted by
T-1249 but not by T-20 [6] (Fig. 1a). Compared with
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Fig. 1. Sequence diversity within the HR-1 and HR-2 regions and inhibition of highly divergent HIV-1 group M and O variants by
T-20 and T-1249. (a) Alignment of the HIV-1 M and O HR-1 (left) and HR-2 (right) gp41 sequences. Dots indicate identity with the
NL4-3 sequence and dashes the gaps introduced to optimize the alignments. The GIV motif (DIV in NL4-3) and the sequence of the
hydrophobic pocket (HP) in HR-1 and the hydrophobic anchor residues in HR-2 are boxed. The HIV-1 group M sequences were
derived from the Genbank database (accession numbers AAF69304, AAK31042, AAT67532 and AAT67533). Numbering refers to
the HXB2 gp41 sequence. The letters and numbers following the names of the HIV-1 isolates or molecular clones specify the
subtype or group, respectively, and the co-receptor tropism. (b) TZM-bl indicator cells were infected in triplicate with HIV-1 group
M or O variants in the presence of the indicated concentrations of T-20 (left) or T-1249 (middle) as described previously [19].
Shown are average values of triplicate measurements for each drug concentration. The I1Cs values (right) were derived from two

independent experiments each performed in triplicate.

HR-1, the HR-2 amino acid sequences showed a higher
degree of sequence diversity (Fig. 1a). Notably, only 20 of
36 (56%) and 21 of 39 (54%) of the T-20 and T-1249
amino acid residues, respectively, were preserved in the
HIV-1 O HR-2 consensus sequence. However, the three
hydrophobic anchor residues in HR-2 (W117, W120
and 1124), proposed to bind in to the HR-1 hydrophobic
pocket [20], were conserved.

Next, we analysed the sensitivity of the HIV-1 group B
NL4-3, LAI.2 and YU-2 molecular clones, four HIV-1 M

(clades A, C, D and F) and six HIV-1 O isolates to T-20
and T-1249-mediated inhibition as described [19]. All
HIV-1 variants were inhibited by T-20 and T-1249, albeit
with differential efficiency. The ICsy of LAIL2
(13.2 & 2.6 nM) for T-20 was fourfold lower than that
of NL4-3 (53.0 = 19.9 nM; Fig. 1b) indicating that the
G36D change in the ‘GIV’ motif reduces the suscepti-
bility of NL4-3 to inhibition by T-20. In contrast, NL4-3
was highly sensitive to T-1249 (Fig. 1b). A mutation of
N42D in the NL4-3 HR-1 region did not significantly
affect HIV-1 sensitivity to inhibition by T-20 and T-1249
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(data not shown). It has previously been proposed that the
N42D variations might render group O viruses resistant
to T-20 [14]. Unexpectedly, the average ICs, of T-20
obtained for the six HIV-1 O isolates (23.2 &= 12.1 nM;
Fig. 1b, lower panel) was even lower than that of group M
isolates (28.8 & 21.3 nM; Fig. 1b, upper panel). There-
fore, despite its high genetic diversity HIV-1 O is sensitive
to T-20.

On average, HIV-1M isolates were approximately
threefold more sensitive to T-1249 than to T-20 (P <
0.05). In contrast to HIV-1 M, the group O isolates
showed no significant differences in their susceptibility to
T-20 and T-1249 (Fig. 1b). The T-1249 ICs, values
of the HIV-1 O isolates ranged from 7.7 £1.5 to
48.7 £ 15.1 nM and were on average 2.2-fold higher
than those of HIV-1 M variants (Fig. 1b). It is noteworthy
that the susceptibility of the six HIV-1 O isolates analysed
to both T-20 and T-1249 inhibition correlated signifi-
cantly (R* = 0.96; P = 0.001). The HIV-1 O MVP9435
and MVP13127 isolates were less sensitive to T-20 and
T-1249 than the remaining group O isolates (Fig. 1b), but
did not contain any HR -1 sequence variations explaining
their reduced susceptibility to fusion inhibitors. There-
fore, changes outside of the HR-1 region might also
modulate the sensitivity of HIV-1 to fusion inhibitors.

In conclusion, our data show that T-20 efficiently inhibits
HIV-1 O entry, suggesting that this fusion inhibitor
would be effective in individuals infected with highly
divergent group O strains. Consistent with our results it
has recently been documented that T-20 reduced the viral
load in a patient with HIV-1 O infection [21]. On
average, group O isolates were less efficiently inhibited by
T-1249 than HIV-1 M isolates. This result was unex-
pected because T-1249 is composed of sequences derived
from HIV-1, HIV-2 and SIV and targets the hydrophobic
cavity in HR-1. However, the HIV-1 M and O deep
pocket regions differ by changes of Q56R and T58S and
the HR-2 region is also highly diverse (Fig. 1a). It has
been reported that variations in HR-2 might impact the
sensitivity of HIV-1 to entry inhibitors targeting HR-1
[22]. Peptides related to T-1249 might become the next
generation of fusion inhibitors. Therefore, further studies
are warranted on the impact of sequence variations in the
HR -1 hydrophobic cavity and in the HR -2 region on the
susceptibility of HIV-1 to fusion inhibitors and on
viral fitness.
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A new insertion in the HIV-1 reverse transcriptase
gene inducing major resistance to non-nucleoside
reverse transcriptase inhibitors
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We identified an HIV-1 isolate with a 3 base pairs
insertion in the 100—105 region of the reverse tran-
scriptase gene (RT) along with a G190E and a V75A
mutation. Virus carrying the insertion alone or in
association with G190A was not infectious. The
association of G190E and the 100-105 insertion
displayed a high level of resistance to non-nucleo-
side reverse transcriptase inhibitors; the addition
of the insertion to G190E may increase the activity
of RT.

Non-nucleoside  reverse  transcriptase  inhibitors
(NNRTT) directly bind reverse transcriptase (RT), at a
hydrophobic pocket near the catalytic site. The binding
site is formed by amino acids from codons 100-110,
180—190 and 220—-240 [1]. The most common mutations
in viruses isolated from patients treated with NNRTT are
Y181C and K103N. Other mutations include L1001,
K101E, V106A, V179D, Y188H/C, G190A/C/Q/S/V/
E/T, P225H, P236L and Y318F [2,3]. Mutations of
residue 190 (mostly G190A/S) represent approximately
15% of NNRTI-resistant variants and confer variable
levels of drug resistance and fitness [4,5]. Variants carrying
the G190E mutation are linked to reduced susceptibility

to NNRTI, but show impaired replication with sig-
nificantly reduced polymerase, RNase H and protease
activities [2—4,6].

We isolated a virus that simultaneously developed the
triple association G190E mutation, the V75A mutation
and a 3 base pairs insertion in the 100-105 region
(LKKKKS — LKKKKKS) of the RT'encoding region. To
assess the impact on drug resistance of this new insertion,
alone or in combination with other substitutions, we used
overlap extension polymerase chain reaction mutagenesis
and then conducted phenotypic testing using a recombi-
nant virus assay (Phenoscript; Viralliance, Paris, France).

Briefly, these three mutations (V75A/insertion/G190E)
appeared in a background of other mutations (RT gene:
T69D, M184V, T215Y; protease gene: M46l, 154V,
V82T, 1884V) in a patient heavily pretreated, 6 weeks
after the introduction of the combination abacavir,
efavirenz and nelfinavir. The insertion initially encoded a
lysine (LKKKKKS) and subsequently an arginine
(LKKRKKS). Efavirenz was withdrawn after 14 months,
and within 7 months the mutations V75A and G190E and
the 3 bp insertion were no longer detected in classical
genotypic resistance tests. When efavirenz was reintro-
duced 16 months later, V75A, G190E and the insertion
reappeared within 2 weeks. No viral fitness variation was
observed in vivo as judged on the plasma viral load and
CD4 cell count, which were stable over time.

Site directed mutagenesis and phenotypic testing provided
the following information (Table 1): the G190E mutation
alone or in association with the V75A mutation conferred
high-level resistance to efavirenz and nevirapine and a
much reduced level of resistance to delavirdine. When
combined with the insertion (K or R), G190E conferred
high-level resistance to delavirdine, in addition to efavirenz
and nevirapine. Surprisingly, the insertion (K or R)
without the 190E mutation, whatever the codon at
position 75, was not infectious in the Phenoscript assay.
This may be the result of a marked conformational
change in the RT protein, resulting in a loss of enzyme
function. The G190E mutation could thus compensate
for the insertion, restoring polymerase activity.

Mutation G190E is seen in only 1% of NNRTI-treated
patients [2]. We found for the past 5 years in our
laboratory nine G190E (in association with a L74V
mutation in one case) compared with 278 G190A (ratio
1:29) (data not shown). Huang et al. [4] reported that
G190 substitutions resulted in reduced infectivity,
reduced RT protein synthesis, and low RT and protease
activities. But clinical isolates carrying an amino acid
substitution at position 190 replicated significantly more
efficiently than their respective site-directed mutants in
the context of other mutations or polymorphisms in the
RT and the protease region, in a complex compensatory
mechanism [4]. In vitro, G190E is selected only under





