

Processing of positive blood cultures using total laboratory automation – chances, challenges and limits

Authors: Irene Burckhardt*, Michael Weitnauer, Silke Winter, Stefan Zimmermann Department for Infectious Diseases, Med. Microbiology and Hygiene, University of Heidelberg, Germany; *correspondence to: irene.burckhardt@med.uni-heidelberg.de

Introduction

Laboratory automation entails a substantial reorganization of the classic manual microbiology workflow. For screening and urine samples automation resulted in a reduced time to report and an increase in detection of gram-positive bacteria. Automation of blood cultures is challenging due to identical lab numbers for paired blood culture bottles, generation of gram slides and grammorphology driven initial susceptibility testing. Additionally, processing blood cultures is already a highly optimised workflow in the manual setting.

Materials and Methods

We integrated our blood culture workflow into an existing automation system, which already processed up to 600 samples per day. We implemented a workflow incorporating the creation of gram slides and subculture plates for each bottle type. In order to work with the FA-module of the InoculA (BD Kiestra) gramslide preparation and subcultures were done from a NaCl (0.85%) dilution of the positive blood culture fluid. Results of gram-slides were compared. Different imaging times and inoculation volumes for plates were assessed for suitability. We compared/analyzed the data of more than 200 bottles of true blood cultures (aerobic and anaerobic bottles) processed either manually or with the automated workflow.

Figure 1: Obstacles: a) identical lab numbers on aerobic and anaerobic bottle; b) InoculA can not draw liquid directly rom blood culture bottle; c) + d) solution: 2.5ml NaCl (0.85%) tube containing 3-5 drops of liquid from the positive blood culture bottle; e) fast processing of individual positive blood cultures?

a)	Classic workflow	b)
	Bottle positive	
	\checkmark	
	Tube with NaCl dilution -> susceptibility test	
	Subculture plates -> Incubator	
	Slide -> Gram-stain	
	\checkmark	
	Staining of slide	
	\checkmark	
	Microscopy of gram-slide	
	Decision on follow-up work	
	\checkmark	
	Primary susceptibility testing (NaCl dilution)	
	AIC determination (subculture plates, afternoon	Primar
	same day if enough growth)	MIC determ
	PCR (MRSA, VRE: directly from positive bottle)	
		PCR (M

Figure 2: workflow comparison: a) classic; b) automated (TLA)

a) Gram-slide: identical result					b) Gram-slide: mismatch - analysis					
Morphology		No.			Mismatch	No.	Morphology			
соссі	uncharact.	4			Cocci morph mismatch	7				
	pairs	6			Rod morph mismatch	4				
	clusters	98			No microorg. TLA	8 (3,5%)	<u>Morphology classic</u> 2 x cluster 2x gram-neg. rod 2x Propioni			
	chains	27	135 (64%)							
rods	Gram-neg.	59								
	Gram-pos.	3					2x yeast			
	Gram-lab.	1	63 (30%)		No microorg. Classic	4	Morphology TLA			
yeasts		9	9 (4%)			(1,7%)	2x gram-positive rod			
No microorg.		5	5 (2%)				1x yeast			
SUM		212	212		SUM	23				
Table 1: Comparison of gram-slides from classical workflow to TLA workflow										

b) mismatches (10%); c) gram-slides prepared by the TLA;

Results

	Blood agar (10µl)			Chocolate agar (10µl)				Blood agar (100µl)				
	5h	6h	7h	24h	5h	6h	7h	24h	5h	6h	7h	24h
Aerobic Bottle												
No growth	21	16	11	3	20	16	10	4	9	7	4	2
Minimal growth	24	7	8	0	26	10	9	0	6	3	6	0
growth	39	61	65	81	38	58	65	80	19	24	24	32
Total aerobic	84	84	84	84	84	84	84	84	34	34	34	34
Anaerobic bottle												
No growth	11	7	5	3	13	8	8	3	2	1	1	0
Minimal growth	32	9	2	0	27	11	6	0	11	2	0	0
growth	31	56	65	69	32	53	58	69	21	31	33	34
Total anaerobic	72	72	72	72	72	72	72	72	34	34	34	34
SUM	156	156	156	156	156	156	156	156	68	68	68	68

lifferent media

- samples.
- bacteria on plates.
- standardized results.
- morning.
- during daytime.

Table 2: growth kinetics of positive blood culture samples on

Conclusions

1. The development of an automated workflow for blood cultures is more complex than for urine or screening

2. The main limitation for workflow acceleration is the growth kinetic of

The integration of blood cultures into automation has the advantage of giving

4. It is well feasible for en-bloc samples in the

5. It is difficult for singular positive samples

