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Research happens in teams. Many collaborators :) 
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And more who I couldn’t find photos of



Why care about the effects of different interventions?

Governments across the world 

implemented a suite of 

non-pharmaceutical interventions to 

control the COVID-19 pandemic.
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Why care about the effects of different interventions?

Governments across the world 

implemented a suite of 

non-pharmaceutical interventions to 

control the COVID-19 pandemic.

As we know, interventions have 
costs—socially, economically, … 
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COVID-19 in the UK: The Policymaker’s Choice
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What restrictions should we ease?



COVID-19 in the UK: The Policymaker’s Choice
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How can we control 
the resurgence?



COVID-19 in the UK: The Policymaker’s Choice
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Are we safe to 
ease 
restrictions?
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Policymaker:
How do we balance the social costs of interventions 
with control of COVID?



General Approach

Data-driven NPI effectiveness 

modelling
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General Approach

Data-driven NPI effectiveness 

modelling

Data: timeline of different 

interventions across regions, number of 

reported cases and deaths in those 

regions 
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General Approach

Data-driven NPI effectiveness 

modelling.

Bayesian Generative Model:

“What is the probability of observing data 
D if the intervention X has effect Y?”
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General Approach

Data-driven NPI effectiveness 

modelling

Prior distribution:

“Before observing any data, what is 
our belief about the effectiveness of 
intervention X?”
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Prior 
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General Approach

Data-driven NPI effectiveness modelling.

Several papers:

[A] “1st wave”, March-July 2020

[B] “2nd wave”, August-Jan 2020

[C] Mask wearing effects

[D] Seasonality

Instead of focusing on results, let’s focus on 

learnings that mean things today.
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Learning #1: Garbage in, Garbage Out

● Our inferences combine data with a probabilistic model. The quality of data 
critically determines the “quality” of our inferences.

● Data collection is difficult—it requires judgement calls, proper scoping, effective 

teamwork, …

But, contributions to data can be undervalued by academia.  How can we incentivise 

high quality, “modelling ready” data collection? 
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Learning #2: Effectiveness Changes in Time.

● Our inferences are made in the context of our data. 
○ Midpandemic schools ≠ prepandemic schools

● During the pandemic, organisations implemented safety measures and people 

changed their behaviour.
○ If people in the population no longer meet in large groups, banning large 

gatherings doesn’t affect transmission although it previously did!

How to communicate limitations and nuance to policymakers?
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Learning #3: Adapting to time sensitivity

● Exponential growth leads to incredible time sensitivity. A delay by a few days can 
drastically change the number of infections/cases/deaths. 

○ E.g., consider investigation into transmission advantage of new variants of concern.

How can we produce decision relevant research in a timely fashion?

Having tools ready, and releasing high quality, documented tools so others can easily build upon them!

Alternative peer review protocols, with more dialogue and real time discussion? 
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Summary

● Understanding the effectiveness of different interventions is crucial for smart 

policy.

● We can tackle this question by combining Bayesian modelling with high quality 

collected data.

● What have we learnt?
○ In short, academic structures and incentives are not well designed for performing time-sensitive 

research in a pandemic. How can we equip researchers with the skills to perform and communicate 
research in emergencies?

■ Data, communication of limitations and nuance, changes to peer review and publicly 

releasing code and data, making high quality modelling data available, training for time 

sensitive situations, …
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Our work
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transmission in temperate climates." MedRxiv (2021).

21



Thank you for your attention
Check out the papers for more detail, limitations, …
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Why study the second wave?
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Safety Measures
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Behaviour Stability
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The first wave effects 
will not generalise to 
the second (and future 
waves)
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The first wave effects 
will not generalise to 
the second (and future 
waves)
Also: New NPI constellations (and more data) 
allow new insights.



How to study the second wave?
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Local epidemics
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UK in 
November 
2020



New interventions
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Second Wave NPI Effectiveness Estimates
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Data
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● Problems with existing intervention datasets:
○ National level intervention data
○ Intervention definitions not suitable for second wave
○ Lack of validation procedures (low data quality)

Data
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● How to start? - Proper scoping!
○ Questions

■ What NPIs mattered?
■ What level of geographic granularity?
■ Is case and death data available at that level?
■ What period of analysis?

○ Solutions
■ Exploratory data collection
■ Talking to local epidemiologists
■ Many judgement calls -> this is a job for a team

Data
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Data
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● We collect fine grained intervention data in 114 areas from 7 European 
countries. 

○ We use stratification by deaths in the first wave to ensure our estimates generalise. 

● NPIs:
○ Gathering and Household Limits (Public/Private/Indoor/Outdoor)
○ School Closures (primary/secondary school)
○ University Closures
○ Gastronomy/Nightclubs/Leisure Venues/Retail Business Closures
○ Curfews
○ Mask Wearing (5 stringency levels)



Data
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Data
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Data
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Modelling
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Modelling Approach - First Wave
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Modelling Approach
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● We observe increases in transmission unrelated to changes in NPIs. 
● Solution: random walk term in transmission. 

Weekly Random Walk Noise

Allows for smooth changes in R every 
week. This can explain the increases in 
transmission unrelated to NPIs. 
 

R: secondary infections generated by
       primary infection



Modelling Approach
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● The number of infections N is determined by a renewal equation:

 



Modelling Approach
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● First wave NPI effectiveness estimates use national data (usually). 
● In the second wave, you have to go local.

○ Problem: fewer cases and deaths in each area! More difficult to estimate R. 
○ Solution: additional noise in the modelling, reducing the influence of small case and death 

counts. 

If cases increase from 1 to 2 in a 
week, is this R=2? 

If cases increase from 1000 to 
2000 in a week, is this R=2? 



Modelling Approach

● R tells us the amount of infections generated by the currently infected 
people. 

● Therefore, we can predict the number of infections that will occur in the 
future. 

● Infections today show up as cases and deaths in the future.
○ These infections are smoothed and delayed. 
○ Then, they are matched to the observed cases and deaths.

Now, given a probabilistic model and a dataset, we can perform Bayesian 
inference using standard MCMC sampling algorithm. Big thanks to the Numpyro 
team!
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Results
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Overall, the interventions that regions 
actually used in the second wave 
were less effective. 

The most stringent set of NPIs in 
each region reduced Rt by average 
~55%. 

But, in the first wave estimates are 
76%-82%. 

Behaviour changes & safety 
measures. 
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Results
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Business closures were very 
important!

Similar effects for nightclubs, retail 
businesses and gastronomy. 

Smaller effects for Leisure Venues. 



Results
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Education institutions were very 
important in the first wave. Smaller 
effects in the second wave suggest 
successful safety measures. 



Results
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Weaker gathering bans were not 
particularly effective. 

Significant reductions in transmission 
from the strictest bans, namely 
banning all gatherings, or only 
allowing gatherings with 1 other 
person. 



Results
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Curfews and mandatory mask wearing 
also helped. 



Robustness / validation
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Key lesson: be skeptical! 

Other validation checks: 
- Posterior predictive
- Prior predictive 
- Confounder 

simulations
- Empirical power 

calculations
- Single-model 

meta-analysis
- Multivariate sensitivity
- Data sanity checks:

- Double entry
- Expert 

interviews
- …



Robustness / validation
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How to interpret results under misspecification / 
when model assumptions are broken?



Limitations

● Correlation analysis. 
● Unobserved factors may be assigned to NPIs.
● Assume constant IFR/IAR.  
● NPI effects assumed to be the same across countries.  
● How will these effects generalise e.g., to the new variants of concern?
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Take Home Story

1. We believed that second wave effects would be markedly different to the first 

wave... 

2. … and that’s exactly what we found. 

3. But, our estimates are historic, and policymakers still need to balance the 

costs of COVID control and COVID transmission. 

4. For now, a combination of second wave effects with real-time monitoring 

and surveillance may be the best we can do. 
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First wave slides
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Goal

● Governments worldwide implemented nonpharmaceutical interventions (NPIs) 
to control the spread of COVID-19. 

○ e.g., closing schools, restaurants, etc… 

● We know, in combination, that these interventions were successful at reducing 
transmission significantly. 

● But, how effective was each NPI?

● And why do we care?
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Possible approaches and challenges

● 1) Controlled trials
○ Politically and ethically challenging

● 2) Simulations
○ Assumptions lead to foregone conclusions

● 3) Cohort studies
○ Confounding
○ Only works for some interventions

● 4) Observational multi-region studies
○ Need diverse data
○ Need high-quality intervention data
○ Need assumptions that can affect conclusions
○ Confounding
○ Past and future effectiveness may be different
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Our NPI Data

● The European response was 
somewhat uncoordinated!

● Different countries implement 
different NPIs at different 
times!

● Verified with independent 
double entry! 

41 Countries
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Our NPI Data
Why collecting our own
data?
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● Many public datasets, but the 
data quality is poor. (Focus on 
breadth rather than accuracy.)

● Verified with independent 
double entry! 



Cases and deaths
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● Several possible sources: John Hopkins University, ECDC, WHO

● Obvious problems:
○ Changes in testing

○ Reporting is chaotic
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Epidemiological parameters

● You need at a minimum:
○ Serial Interval/Generation Interval

○ Delay from infection to case confirmation

○ Delay from infection to death

● This is handled sloppily in most work. 

● You want:
○ Distributions

○ Uncertainty over parameters
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Model Overview



Modelling Challenges

● Constant, country-level differences in the:

○ ascertainment rate - the proportion of infections reported.

○ infection-fatality rate - the proportion of infections that lead to death. 

● Time-varying differences in the ascertainment rate and infection-fatality rate.

● Biases in testing and reporting 
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• Observation model



Recap: Key Model Features

● We extend the model of Flaxman, S., Mishra, S., Gandy, A. et al. Estimating 
the effects of non-pharmaceutical interventions on COVID-19 in Europe. 
Nature 584, 257–261 (2020). https://doi.org/10.1038/s41586-020-2405-7

● Our model observes both cases and deaths. 

● We account for uncertainty in key epidemiological parameters, such as the 
delays between infection and case/death reporting. 

● We add noise to the measure of transmission i.e., we use transmission noise. 

68

https://doi.org/10.1038/s41586-020-2405-7


Main Results
Default Settings

● Note: with priors over 
uncertain 
epidemiological 
parameters.

● (obtained under default 
settings)
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Results
Default Settings

● Note: with priors over 
uncertain 
epidemiological 
parameters.

● Adjustment required 
for local circumstances.
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NPI Combinations
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Sensitivity analyses (206 conditions)
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Mitigation Calculator
http://epidemicforecasting.org/calc
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Some Limitations

● Assumed that NPI effectiveness doesn’t vary across countries and time. 

● Assumed that NPIs don’t interact. 

● Our model doesn’t account for numbers of susceptible people changing over time. 

● No age-stratification ...
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More Limitations
(There are many others too … )

● General comment: we’ve made a lot of assumptions.

○ e.g., NPI interactions, infection model, parameter values, …..

● How much are unobserved factors attributed to our NPIs?

○ And, we know we have unobserved factors! Behaviour change, unrecorded NPIs, …
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Can we trust our estimates?
Holdout Validation

● We don’t aim to forecast cases and deaths.

● But if our estimates don’t help us to predict cases and deaths, they aren’t 
useful! 

76



Can we trust our estimates?
How to test for unobserved factors?
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Model Comparison
Transmission noise helps!
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Sensitivity Analysis I
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Sensitivity Analysis II
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Structural Sensitivity
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