Medical Data Science Diploma of Advanced Studies

Heidelberg University Hospital Institute of Medical Biometry

Module Description

Date: 07.12.2021 1 year, 38 ECTS

Summary of the program

Degree of the study program	Diploma of Advanced Studies
Name of the university	Ruprecht-Karls-University Heidelberg
Name of the responsible unit	Institute of Medical Biometry
Title of the program	Medical Data Science
Study program	Postgraduate study program, block courses of 2-3 days
Version / date	Version 3.0, 19.02.2021
Amounts of ECTS	38 ECTS
Duration	1 year (2 semester)
Short overview of the modules	Data Scientist's Toolbox, Statistical Modelling, Machine Learning, Practical Application
Target competencies	The present program equips students with statistical and computational methods for managing and analyzing large and complex data sets. Additionally, students learn how to extract and present information from these data sets in a meaningful way.

Content

1 Introduction	4
2 Overview	4
3 Description of the modules	5
3.1 Module Data Scientist's Toolbox (M1)	5
3.2 Module Statistical Modelling (M2)	6
3.3 Module Machine Learning (M3)	7
3.4 Practical Applications (M4)	8
4 Appendix1	0
4.1 Schedule of the course "A Data Scientist's Toolbox"1	0
4.2 Schedule of the course "Regression Methods"1	1
4.3 Schedule of the course "Supervised Learning"1	2

1 Introduction

The program "*Medical Data Science*" is a postgraduate study program which is designed to provide a deeper, more specialized knowledge of statistical tools to analyze (big) data sets in medical research projects. Students learn to manage, analyze, and visualize the data, as well as to provide appropriate reports and interpretation of results. Besides theoretical considerations, applications are especially focused.

In the following sections, the modules with the respective courses are described.

2 Overview

Overall, the program consists of four modules. Table I gives an overview of the modules with the respective examinations and the credit points (ECTS) assigned to each course. Additionally, the time of attendance in days is given. The ECTS for each course include preparation and post-processing time. In total, the program consists of eight courses (30 ECTS) and a project work (8 ECTS) of three month preparation time.

Modules	ECTS, Days	Examination
1 Data Scientist's Toolbox (M1)		
1.1 Introduction into Data Science	2, 1.5	
1.2 Working with Data, Plotting,	4, 2.5	
Reproducibility, and Presentation		
Total number of ECTS	6	Homework
2 Statistical Modelling (M2)		
2.1 Regression Methods	4, 2.75	
2.2 Generalized Additive Models	4, 2.75	
2.3 Bayesian Statistics	4, 2.75	
Total number of ECTS	12	Written examination
3 Machine Learning (M3)		
	4 2 75	
3.1 Supervised Learning	4, 2.75	
3.2 Unsupervised Learning	4, 2.0	
Total number of ECTS	8	Written examination
4 Practical Applications (M4)		
4.1 Data Science in Practice	4, 2.75	
4.2 Project Work	8, 3 month	
Total number of ECTS	12	Project thesis

Table I: Overview of modules of the program "Medical Data Science".

3 Description of the modules

3.1 Module Data Scientist's Toolbox (M1)

Title of the module: Data Scientist's Toolbox Prior knowledge None Responsible persons Dr. Marietta Kirchner Subject matter will be taught by alternating teacher-oriented Didactics presentations with prolonged practical tasks. Students will be encouraged to find own solutions by discussing the practical tasks in-class under the supervision of the teacher. The module is divided into two courses: "Introduction into Topics Data Science" and "Working with Data, Plotting, Reproducibility, and Presentation". 1. Course: "Introduction into Data Science" Medical Data Science: definition and applications • Stake out term "medical data science" • Broad overview of topics and applications covered in subsequent courses General introduction in R programming language 2. Course: "Working with Data, Plotting, Reproducibility and Presentation" Working with data: • Importing data from various sources (SAS, SPSS) ('haven' package) • Visualizing data using a 'Grammar of Graphics' ('ggplot2' package) • Transforming data ('dplyr' package) • Basics of relational data bases • Tidy data Workflow advice and functional programming ('purrr' package) Reproducibility: Why reproducible research is essential to good • scientific practice • RMarkdown and knitr for automatic report generation Package dependencies / CRAN / MRAN ('checkpoint' package) 'packrat' package Outlook: container-based workflow using Docker Presentation:

	Creating interactive analyses using Shiny		
	 Deploying interactive analyses as Web-apps 		
Acquisition of competencies	The participant is able to differentiate between medical data science and "classical" biostatistics and knows about potential fields of application. He/she is able to program in R. The participant is able to import data from a wide variety of sources in the R-environment. He/she understands the basic structure of relational data- bases and is able to perform SQL joins and transforms in R. He/she is able to visualize data using a systematic, grammar- based approach.		
	The participant is aware of the need for reproducibility of his/her research and is able to implement basic technical reproducible research methods to generate reproducible reports. The participant knows about the possibilities of		
	making reports interactive using the Shiny technology and is able to present his/her work using web applications.		
Workload	Attendance time: 15h + 20h = 35h		
	Preparation and post processing time: 40h + 90h		
	Total effort: 165h		
Module examination	Graded homework: exploratory presentation of a data set of interest; reproducible report of web app possible		

3.2 Module Statistical Modelling (M2)

Prior knowledge	The participants must have			
-	Basic knowledge of statistics and probability theory			
	Basic knowledge in R			
Responsible persons	Dr. Lorenz Uhlmann			
Didactics	The contents are taught in the form of conventional			
	lectures. The lectures consist of various forms of teaching,			
	e.g. discussions, group work, and classical teacher- centered parts. A special emphasis is put on practical			
	training phases where the students learn to apply the			
	taught methods.			
Topics	This module provides an introduction to regression			
	modeling strategies and Bayesian statistics and consists of			
	three courses. The first course covers "Regression			
	Methods" and comprises the following topics:			
	• Linear and nonlinear regression (exponential family, link function)			
	• Variable or model selection methods (Subset			
	selection, forward, backward, and stepwise selection)			
	 Model evaluation (Akaike/Bayesian Information 			
	Criterion (AIC, BIC), Deviance, Mellow' Cp, Mean			
	squared error, Brior Score)			

	 Resampling methods (Bootstrapping, jackknife, cross-validation) 		
	Implementation in R		
	The second course covers "Generalized Additive Models"		
	(which are an extension of regression methods) and		
	comprises the following topics:		
	 Polynomial functions of covariates 		
	Modeling using splines		
	Non-parametric modeling of covariates		
	Implementation in R		
	The third course covers "Bayesian Statistics" and comprises		
	the following topics:		
	Bayes' Theorem		
	Bayesian linear and non-linear regression models		
	Markov Chain Monte Carlo Methods and Gibbs		
	sampling		
	Implementation in JAGS and R		
Acquisition of competencies	The students are familiar with (Bayesian) regression		
	modeling strategies. They know how to apply the taught		
	methods and which assumptions are to be met to obtain		
	sensible results. Furthermore, they know how to interpret		
	the results. They are able to advise practitioners on		
	statistical (regression) models as well as plan and		
	Implement these models (in R) and present the results in		
Workload	an appropriate way.		
vvorkioau	Altendance time: 3°22n=66n.		
	Total effort: 336h		
Module examination	Written exam Duration: 3x45 min		

3.3 Module Machine Learning (M3)

Prior knowledge	The participants must have			
	Basic knowledge of statistic and probability theory			
	Knowledge of regression analysis.			
Responsable persons	Dr. Katharina Hees and Dr. Lorenz Uhlmann			
Didactics	The contents are taught in the form of conventional			
	lectures. The lectures consist of various forms of teaching,			
	e.g. discussions, group work, and classical-teacher			
	centered parts. A special emphasis lies also on practical			
	training phases where the students learn to apply the			
	taught methods independently.			
Topics	This module provides an introduction to machine learning			
	and statistical pattern recognition. The module is divided			
	into two courses: "Unsupervised Learning" and			
	"Supervised Learning".			

	In the course "Unsupervised Learning", methods to			
	describe associations and patterns in data are discussed.			
	The topics included are:			
	Clustering			
	Dimension reduction			
	Introduction to deep learning			
	Generative models			
	Topics included in the "Supervised Learning" course:			
	Regularization methods for linear regression			
	Model assessment and selection			
	Neural networks			
	Decision trees			
	Random forests			
	Bagging and boosting			
Acquisition of competencies	The participant knows the basic methods of supervised and			
	unsupervised learning. He/She can decide, which of the			
	methods is appropriate in a special situation. Furthermore,			
	he/she is able to apply the methods to data (using R) and			
	to interpret the results correctly.			
Workload	Attendance time: 16+22 = 38h			
	Preparation and post processing time: 100 + 90h = 190h.			
	Total effort: 228h			
Module examination	Written examination, duration: 2x45 min.			

3.4 Practical Applications (M4)

Title of the module: Practical Applications			
Prior knowledge	Content of modules M1, M2, and M3		
Responsable persons	Johannes Vey, Dr. Regina Krisam, Dr. Marietta Kirchner		
Didactics	Teaching forms are mainly group work, presentations, and discussions in the plenary. Additionally, independent working phases supervised by responsible persons are included.		
Topics	This module consists of two parts: 1. "Data Science in Practice" and 2. "Project Work". The course "Data Science in Practice" includes working with data- analytic methods, which are taught in the first three modules. Students will work in small groups on practical problems in the field of data science. The course focuses on tackling methodological problems in the analysis of the data and on presenting and discussing the results. The second part of this module is the project thesis which concludes the study program. The project thesis should be stimulated by a practical problem which can be an extension of the material discussed in the course "Data Science in Practice". Students work independently on their project.		

Acquisition of	Gather practical experience			
competencies	• Learn to work in small groups with (large) datasets			
	Presentation and discussion of results			
	Consolidation of acquired knowledge			
	 Independent scientific study 			
Workload	Attendance time: 20h			
	Preparation and post processing time: 90h + 220h			
	Total effort: 330h			
Module examination	Presentation of results (results of group work as part of practical			
	experience in "Data Science in Practice", not graded) and project			
	work (grade consists of 70% for written project work and 30% for			
	presentation of project work)			

4 Appendix

In the following, we show some examples of timetables.

TIME	THURSDAY	TIME	FRIDAY	TIME	SATURDAY
9.00 – 10.30	Data Manipulation	9.00 – 10.30	Reproducible Reports	9.00 – 10.30	Interactive Reports with Shiny
10.30 – 11.00	COFFEE BREAK	10.30 – 11:00	COFFEE BREAK	10.30 – 11:00	Coffee Break
11.00 – 12.30	Data Manipulation	11.00 – 12.30	Reproducible Reports	11.00 – 12.30	Interactive Reports with Shiny
12.30 – 13.30	LUNCH BREAK	12.30 – 13.30	LUNCH BREAK		
13.30 – 15.00	Data Visualization	13.30 – 15.00	Version Control with Git		
15.00 – 15.30	COFFEE BREAK	15.00 – 15.30	COFFEE BREAK		
15.30 – 17.00	Data Visualization	15.30 – 17.00	Version Control with Git		

4.2 Schedule of the course "Regression Methods"

Тіме	THURSDAY	Тіме	FRIDAY	Тіме	SATURDAY
9.00 - 10.30	Linear Regression	9.00 – 10.30	Resampling Methods	9.00 – 10.30	Survival Analysis
10.30 – 11.00	COFFEE BREAK	10.30 – 11.00	COFFEE BREAK	10.30 – 11.00	COFFEE BREAK
11.00 – 12.30	Linear Regression	11.00 – 12.30	Resampling Methods	11.00 – 12.30	Survival Analysis
12.30 – 13.30	LUNCH BREAK	12.30 – 13.30	LUNCH BREAK		
13.30 – 15.00	Generalized Linear Models	13.30 – 15.00	Mixed Models		
15.00 – 15.30	COFFEE BREAK	15.00 – 15.30	Coffee Break	-	
15.30 – 17.00	Generalized Linear Models	15.30 – 17.00	Mixed Models		

4.3 Schedule of the course "Supervised Learning"

Тіме	THURSDAY	Friday	Тіме	SATURDAY
9.00 – 10.30	Introduction (Machine Learning vs. Data Mining, Supervised vs. Unsupervised, etc.)	Model Assessment and Selection I (e.g. Bias and Variance, AIC, BIC, Subset Selection, Cross Validation, Bootstrap)	9.00 – 10.30	Prototype methods
10.30 – 11.00	COFFEE BREAK	COFFEE BREAK	10.30 – 10.45	COFFEE BREAK
11.00 – 12.30	Regularized regression methods I	Model Assessment and Selection II (e.g. Bias and Variance, AIC, BIC, Cross Validation, Bootstrap Methods)		Tree based methods (e.g. Decision Trees, Random Forests)
12.30 - 13.30	LUNCH BREAK	LUNCH BREAK	12.15 – 12.45	LUNCH BREAK
13.30 – 15.00	Regularized regression methods II	Neural Networks and Deep Learning	12.45 – 14.15	Ensemble Methods (e.g. Bagging, Boosting)
15.00 – 15.30	Coffee Break	COFFEE BREAK		
15.30 – 17.00	Regularized regression methods II	Neural Networks and Deep Learning		