The course will be held online. Details about used tools and how to connect will be shared with registered participants.

Registration

Deadline for registration is February 11, 2021.

Course fee

The fee for the course is €470; discounted rate for affiliated with a university €310.

Cancellation

The cancellation policy is as follows: 100% refund for cancellations till February 17; 75% refund for cancellations between February 18 and February 24; no refund for cancellations after February 25, 2021.

Attendee substitutes may be made at any time.

Information

http://www.biometrie.uni-heidelberg.de/datascience

Concept and Contents

University of Heidelberg
Institute of Medical Biometry and Informatics
Department of Medical Biometry
Im Neuenheimer Feld 130.3
69120 Heidelberg

Contact

Dr. Marietta Kirchner
Tel.: 06221/56-4141
datascience@imbi.uni-heidelberg.de

Organization

Simone Fomuki
fomuki@imbi.uni-heidelberg.de

Unsupervised Learning
4. – 5. March 2021
Aims

Course participants will be able to:

- conceptually distinguish between unsupervised and supervised learning and will know about the most important classes of unsupervised learning approaches
- frame unsupervised learning approaches in terms of manifold learning and probabilistic models and know about exemplary techniques
- phrase unsupervised learning as a deep learning task and know how to use specific tools in such a framework

Pre-requisites

The participants must have

- Basic knowledge of statistics and probability theory
- Basic knowledge in R

Course content

The course will cover following topics:

- Clustering
- Dimension reduction
- Deep learning basic principles
- Generative models

In a hands-on approach, we will explore the clustering tools available in R. To provide a conceptual framework for dimension reduction approaches, such as PCA or t-SNE, we will discuss the task of manifold learning. Besides understanding algorithms as performing non-linear transformations with respect to a manifold, this will also enable a probabilistic perspective. To implement the latter, we will discuss and apply deep learning, specifically variational autoencoders (VAEs).

Schedule (subject to change)

Thursday (4th of March)
9:00 – 10:30 Clustering
11:00 – 12:30 Principles of Unsupervised Learning
13:30 – 15:00 Manifold Learning
15:30 – 17:00 t-SNE

Friday (5th of March)
9:00 – 10:30 Variational Autoencoders (VAEs)
11:00 – 12:30 VAEs (continued)
13:30 – 15:00 Exercise
15:30 – 17:00 Exercise (continued)

Number of Participants

The number of participants is limited to 20 per course.

Course instructors

Prof. Dr. Harald Binder and Dr. Moritz Hess
Institute of Medical Biometry and Statistics
Faculty of Medicine and Medical Center
University of Freiburg

Further information

The course will involve individual work and working in groups, including web searches for R packages and documentation.

The practical parts will rely on the language Julia (https://www.julialang.org) and Jupyter notebooks (https://jupyter.org). Participants should install these on their laptops. In Julia, we will mainly rely on the packages Cairo, Clustering, DataFrames, Distances, Distributions, Flux, Gadfly, GZip, and TSne. Therefore, users should also install these on their laptops.