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Abstract

Differences and incompleteness in reporting continuous outcomes across stud-

ies included in a meta-analysis complicate the calculation of consistent effect

measures before pooling the results and may lead to trade-offs that result in

the exclusion of relevant studies. In this master thesis, conversion and im-

putation methods were compared in terms of bias and included in the newly

created uniform R package. Bias was compared using simulation studies

with different data generation scenarios. Methods resulting in the highest

precision were set as default. Version 0.0.1 of the uniform R package allows

to uniform a differently or incompletely reported continuous outcome across

studies and to calculate effect measures for interventional controlled studies.
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Chapter 1

Introduction

Evidence based medicine can be defined as the conscientious, judicious, and

reasonable use of available evidence in decision making about the care of

individual patients [1]. Most scientific evidence gets published in journal

articels. The history of scientific journal articles goes back to the year 1665,

and to date, more than 60 million articles have been published, with a strong

upward trend [2]. This huge and growing amount of scientific evidence makes

it increasingly difficult for researchers and clinicians to keep up to date.

Systematic reviews and meta-analyses try to summarize and synthesize the

available evidence and in this way inform clinical decision making [3].

The synthesis of evidence in meta-analyses is done by pooling effect mea-

sures from individual studies. Both an effect measure and a measure of

dispersion are needed per study for pooling effects across studies. Effect

measures are statistical constructs that summarize the strength of the link

between an exposure and an outcome [4]. Most commonly, an outcome is

compared between an exposed and a nonexposed group for calculating an

effect measure [5]. A continuous outcome for patient groups can be reported

differently, with different measures of central tendency (e.g., mean or median

per group) and dispersion (e.g., standard deviation vs. interquartile range).

In addition, some studies do not report a measure of dispersion at all or
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transform the continuous variable into a categorical one. These differences

in reporting considerably complicate or prevent the calculation of consistent

effect measures for pooling the results of individual studies in a meta-analysis

and may lead to trade-offs that result in the exclusion of relevant studies.

Different methods for the conversion of different measures of central tendency

and dispersion, imputation of missing measures of dispersion, and approxi-

mate retransformation of categorically presented continuous outcomes have

been introduced [5]. The computation of uniform effect measures for stud-

ies included in a meta-analysis frequently requires the combination of these

methods. A clear guidance on which methods should be used is still missing.

This master’s thesis was conducted with the goal of comparing different

methods for the conversion and imputation of differently or incompletely re-

ported continuous outcomes, setting up a guidance on which methods should

be used, and creating an R package for the conversion and imputation of

continuous outcomes and calculation of consistent effect measures.
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Chapter 2

Notation

The following notation is used throughout the thesis.

Greek letters refer to population parameters. Roman letters are used

for sample attributes. E.g., σ refers to a (theoretical) population standard

deviation, while s refers to the standard deviation of a sample.

The subsripts ugtp are used for most parameters. E.g., xugtp refers to a

single value of an outcome measured in study u, in participant group g, at

time point t, and in participant p. The subscript ∗ symbolizes that a param-

eter refers to several studies u, participant groups g, time points t, and/or

participants p. E.g., xugt∗ refers to the mean of an outcome in participant

group g within study u at time point t across participants p.
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Chapter 3

Data Extraction for Continuous

Outcomes

Depending on the measured outcome, data can be structured differently: di-

chotomous data, continuous data, ordinal data, counts and rates, and time-

to-event data. These types of outcome data and especially continuous out-

come data can be presented differently, which is summarized in Appendix

1.

Depending on the design of the studies included in a meta-analysis, mea-

surements performed at one or more time points should be extracted. E.g.,

for a meta-analysis on the effect of an intervention on a continuous outcome,

the preintervention/baseline measurement of the continuous outcome, postin-

tervention measurement, and change from baseline should be extracted from

each study for each group of observations with the corresponding number of

observations, if available.

As mentioned previously, included studies commonly report these mea-

surements differently or incompletely with different measures of central ten-

dency and dispersion, with a measure of central tendency but without mea-

sure of dispersion, or even dichotomized. In the following chapter, previ-

ously introduced conversion and imputation methods for the conversion and
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imputation of differently or incompletely reported continuous outcomes are

described. Usage of these methods may enable the subsequent calculation of

consistent effect measures for studies included in a meta-analysis, which is

described in Chapter 5.
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Chapter 4

Conversion and Imputation

Methods

4.1 Obtaining Mean and Standard Deviation

from Mean and Standard Error by Alge-

braic Conversion

The standard deviation sugt∗ of an independent continuous outcome mea-

sured in a study u, in a participant group g, at a time point t, and across

participants p can be computed from the standard error seugt∗ by

sugt∗ = seugt∗ ×
√
nugt∗, (4.1)

where nugt∗ refers to sample size of the patient group g within the study u

at a time point t [6].

13



4.2 Obtaining Mean and Standard Deviation

from Mean and Confidence Interval by

Algebraic Conversion

The standard deviation of independent observations can be computed from

the 95% confidence interval by

sugt∗ =

√
nugt∗ × (ulugt∗ − llugt∗)

3.92
, (4.2)

where nugt∗ refers to the sample size of a participant group g within a study u

at a time point t, ulugt∗ to the upper limit of the confidence interval, llugt∗ to

the lower limit of the confidence interval, and 3.92 to the value of the inverse

cumulative density function of the standard normal distribution for 0.975 [6].

If the 90% confidence interval or the 99% confidence interval is given instead

of the 95% confidence interval, 3.92 should be exchanged for 3.29 or 5.15,

the values of the inverse cumulative density function of the standard normal

distribution for 0.95 and 0.995.

4.3 Obtaining Mean and Standard Deviation

from Mean and Range

4.3.1 The “Range”-Method

In case of normally distributed values of individual patients, 95% of values

approximately lie within two standard deviations either side of the mean [5,6].

The standard deviation of a continuous outcome in a participant group g

within a study u at a time point t may thus be estimated by

ŝugt∗ =
bugt∗ − augt∗

4
, (4.3)
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where augt∗ refers to the minimum and bugt∗ to the maximum.

4.3.2 Method by Walter and Yao

If the sample size is larger, it is more likely that more extreme values are

observed, which corresponds to a larger range. The method of Walter and

Yao [7] is based on this fact. If the data is assumed to be normally distributed,

Walter and Yao proposed to estimate the standard deviation by

ŝugt∗ = f × (bugt∗ − augt∗) , (4.4)

where f is a conversion factor that decreases with increasing sample size. It

decreases quickly within a range of small sample sizes and slowly for large

sample sizes. The range for different sample sizes taken from normally dis-

tributed data was estimated first by Tippett in 1925 [8], and extensive tab-

ulations of 1/f are provided by Pearson and Hartley [9].

4.4 Obtaining Mean and Standard Deviation

from Median and Range

4.4.1 Method by Hozo et al.

Based on the results of simulation studies with variously distributed data

(normal distribution, log-normal distribution, beta distribution, exponential

distribution, and Weibull distribution), Hozo et al. proposed different for-

mulas for estimating the mean and standard deviation from the median m

and the range depending on the sample size [10].

For estimating the mean, Hozo et al. proposed

ˆ̄xugt∗ =


augt∗+2×mugt∗+bugt∗

4
nugt∗ ≤ 25

mugt∗ nugt∗ > 25
(4.5)

15



where mugt∗ refers to the median of a continuous outcome in a participant

group g within a study u at a time point t, augt∗ to the minimum, bugt∗ to

the maximum, and nugt∗ to the respective sample size. As can be seen, the

median is used as an estimator of the mean with a sample size exceeding 25.
For estimating the standard deviation, the following formulas where pro-

posed by Hozo et al.:

ŝugt∗ =



√
1
12

(
(augt∗−2×mugt∗+bugt∗)

2

4 + (bugt∗ − augt∗)
2
)

nugt∗ ≤ 15

bugt∗−augt∗
4 15 < nugt∗ ≤ 70

bugt∗−augt∗
6 nugt∗ > 70.

(4.6)

4.4.2 Method by Wan et al.

Wan et al. [11] stated that the method by Hozo et al. [10] applies somewhat

arbitrarily threshold values, contradicts the assumption that the standard de-

viation is a finite value, and assumes positivity for minimum and maximum,

which is quite restrictive.

Based on similar simulation studies as performed by Hozo et al. [10], Wan

et al. proposed to use

ˆ̄xugt∗ =
augt∗ + 2×mugt∗ + bugt∗

4
(4.7)

for estimating the mean independent of the sample size and estimate the

standard deviation by

ŝugt∗ =
bugt∗ − augt∗

2Φ−1
(

nugt∗−0.375

nugt∗+0.25

) , (4.8)

where Φ−1 is the inverse cumulative density function of the standard normal

distribution. According to Wan et al. [11], these formulas provided less biased

results in comparison to the method by Hozo et al. [10].
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4.5 Obtaining Mean and Standard Deviation

from Median and Interquartile Range

4.5.1 Method by Wan et al.

Based on simulation studies with variously distributed data, Wan et al. [11]

also proposed formulas for estimating the mean and standard deviation from

the median and interquartile range. For estimating the mean, Wan et al.

suggested

ˆ̄xugt∗ =
lqugt∗ +mugt∗ + uqugt∗

3
(4.9)

where lqugt∗ refers to the first quartile and uqugt∗ to the third quartile.

For estimating the standard deviation,

ŝugt∗ =
uqugt∗ − lqugt∗

2Φ−1
(

0.75nugt∗−0.125

nugt∗+0.25

) (4.10)

was suggested with Φ−1 referring to the inverse cumulative density function

of the standard normal distribution.

4.5.2 Cochrane Method

In the Cochrane Handbook for Systematic Reviews and Interventions [5], it

was suggested to use the median as an estimator of the mean if the data is

assumed to be symmetrically distributed. If the data is also assumed to be

normally distributed, the authors of the handbook suggested to estimate the

standard deviation from the interquartile range by

ŝugt∗ =
uqugt∗ − lqugt∗

1.35
. (4.11)
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4.6 Obtaining Mean and Standard Deviation

from Median, Range, and Interquartile

Range

4.6.1 Method by Bland

Bland [12] looked at a scenario in which the median, range, and interquartile

range is known and aimed at improving the method by Hozo et al. for obtain-

ing mean and standard deviation from median and range by incorporating

the first and third quantiles. Backed up by simulation studies with normally

and lognormally distributed data, Bland came up with the following formula

for estimating the mean:

ˆ̄xugt∗ =
(nugt∗ + 3) augt∗ + 2 (nugt∗ − 1) (lqugt∗ +mugt∗ + uqugt∗) + (nugt∗ + 3) bugt∗

8nugt∗
. (4.12)

For estimating the standard deviation, Bland proposed

ŝugt∗ =


1
16

(a2ugt∗ + 2× lq2ugt∗ + 2×m2
ugt∗ + 2× uq2ugt∗ + b2ugt∗)

+ 1
8
× (augt∗ × lqugt∗ + lqugt∗ ×mugt∗ +mugt∗ × uqugt∗ + uqugt∗ × bugt∗)

− 1
64

(augt∗ + 2× lqugt∗ + 2×mugt∗ + 2× uqugt∗ + bugt∗)2


1
2

. (4.13)

4.6.2 Method by Wan et al.

Wan et al. [11] also looked at the scenario in which the median, range, and

interquartile range are known. Based on the results of simulations studies

with variously distributed data (normal distribution, log-normal distribution,

beta distribution, exponential distribution, and Weibull distribution), the

authors proposed a simplified version for estimating the mean:

ˆ̄xugt∗ =
augt∗ + 2× lqugt∗ + 2×mugt∗ + 2× uqugt∗ + bugt∗

8
. (4.14)

Compared to Bland, Wan et al. claimed to have improved the estimation
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of the standard deviation by incorporating the sample size as following:

ŝugt∗ =
bugt∗ − augt∗

4Φ−1
(

nugt∗−0.375

nugt∗+0.25

) +
uqugt∗ − lqugt∗

4Φ−1
(

0.75nugt∗−0.125

nugt∗+0.25

) , (4.15)

with Φ−1 referring to the inverse cumulative density function of the standard

normal distribution.

4.7 Obtaining Mean and Standard Deviation

from Mean and Missing Standard Devia-

tion by Imputation

4.7.1 Method by Furukawa et al.

Furukawa et al. [13] suggested to impute missing standard deviations by

pooling all available standard deviations from the studies included in a meta-

analysis. How to deal with the situation where continuous outcomes can be

measured at different time points is not explicitly mentioned. It is assumed

that the available standard deviations are pooled separately for different time

points. This results in the following equation for imputing a missing standard

deviation in a patient group g within a study u at a time point t:

ŝugt∗ =

√√√√∑U
u=1

∑G
g=1 (nugt∗ − 1) s2ugt∗∑U

u=1

∑G
g=1 (nugt∗ − 1)

, (4.16)

where sugt∗ refers to available standard deviations in patient groups g within

studies u at a time point t.

Furukawa et al. [13] also suggested that missing standard deviations could

be borrowed from a previous meta-analysis when the number of included

studies is small or the number of studies with missing standard deviation
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is large. The authors applied the two imputation methods to two real data

examples assuming that some of the standard deviations were missing and

reported the degree of concordance of the actual and imputed values as grat-

ifying.

4.7.2 Method by Marinho et al.

Marinho et al. published a systematic review and meta-analysis on fluoride

toothpastes for preventing dental caries in children and adolescents [14]. The

authors imputed missing standard deviations of caries increments through

linear regression of the logarithmized standard deviation of caries increments

on the logarithmized mean of caries increments. The basis of the logarithm is

not mentioned, but it can be assumed that the natural logarithm was used.

In general terms, a missing standard deviation sugt∗ in a patient group g

within a study u at a time point t can be imputed according to Marinho et

al. by

ln (ŝugt∗) = j × ln (x̄ugt∗) + i, (4.17)

where x̄ugt∗ is the mean in a patient group g within a study u at a time

point t. Parameters j and i refer to regression coefficients that are calcu-

lated based on available pairs of mean and standard deviation. The model

assumes a linear relationship between the logarithmized standared deviation

and logarithmized mean.

20



4.8 Obtaining the Standardized Mean Differ-

ence and Standard Error from a 2×2 Con-

tingency Table for a Dichotomized Con-

tinuous Outcome

Some studies dichotomize a continuous outcome by applying a cutpoint on

the continuous outcome. For example, studies on the effectiveness of a blood

pressure medication can measure the decrease of the systolic blood pressure

in mmHg or as a dichotomy (decrease of ≥ 10mmHg vs. < 10mmHg).

After dichotomizing a continuous variable in two groups (e.g., intervention

vs. control), the results can be presented in a 2× 2 contingency table (Table

4.1).

Outcome Intervention Control Total

Success (xugtp ≥ yu∗t∗) nsu1t∗ nsu2t∗ nsu∗t∗

Failure (xugtp < yu∗t∗) nfu1t∗ nfu2t∗ nfu∗t∗

Total nu1t∗ nu2t∗ nu∗t∗

Table 4.1: 2 x 2 Contingency table for a dichotomized continuous outcome.
xugt∗ = measurement of a continuous outcome x in a study u, patient group g,
time point t, and participant p; yu∗t∗ = cutpoint in a study u at time point t;
nsu1t∗ = number of participants with success (xu1tp ≥ yu∗t∗) in study u in the
intervention group (g = 1) at time point t; nsu1t∗ = number of participants
with success (xu2tp ≥ yu∗t∗) in study u in the control group (g = 2) at
time point t; nsu∗t∗ = number of participants with success (xugtp ≥ yu∗t∗)
in study u at time point t; nfu1t∗ = number of participants with failure
(xu1tp < yu∗t∗) in study u in the intervention group (g = 1) at time point
t; nfu2t∗ = number of participants with failure (xu1tp < yu∗t∗) in study u in
the control group (g = 2) at time point t; nfu∗t∗ = number of participants
with failure (xugtp < yu∗t∗) in study u at time point t; nu∗t∗ = number of
participants in study u at time point t.
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To compare a binary outcome between groups of participants, three effect

measures are calculated most commonly: the risk difference, the risk ratio,

and the odds ratio. These effect measures cannot be pooled with effect mea-

sures that are calculated for comparing a continuous outcome between groups

of participants, such as the mean difference or the standardized mean differ-

ence. Sánchez-Meca et al. [15] compared the performance of seven methods

that convert a dichotomized continuous outcome in two participants groups

into the standardized mean difference with standard error. The concept of

these methods differs from the concept of the conversion methods described

above. The above methods aim at obtaining the mean and standard devi-

ation within a participant group. In a second step, the mean and standard

deviation can be compared between participant groups within a study by

calculating an effect measure such as the mean difference or standardized

mean difference. The methods summarized by Sánchez-Meca et al. [15] use

the data of two participant groups and directly obtain the standardized mean

difference comparing these groups.

Sánchez-Meca et al. [15] set up simulation studies to compare the seven

methods for converting a dichotomized continuous outcome in two partici-

pant groups into the standardized mean difference with standard error. The

authors assumed that the two populations were normally distributed but also

checked the robustness of the methods under several conditions representing

nonnormal distributions. Three methods performed best. These three meth-

ods are described in the following.

4.8.1 Method by Cox

In 1970, Cox [16] proposed an index that is based on the odds ratio and its

logit transformation. The standardized mean difference smdu∗t∗ in a study
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u at a time point t is estimated by

ˆsmdu∗t∗ =
ln
(

nsu1t∗×nfu2t∗
nsu2t∗×nfu1t∗

)
1.65

, (4.18)

which is the natural logarithm of the odds ratio divided by 1.65.

The standard error sesmdu∗t∗ is estimated by

ŝesmdu∗t∗ =

√
0.367×

(
1

nsu1t∗
+

1

nfu1t∗
+

1

nsu2t∗
+

1

nfu2t∗

)
. (4.19)

4.8.2 Method by Glas et al.

In 1981, Glas et al. [17] proposed an index that is based on the normal distri-

bution assumption. The previously described method by Cox assumes logistic

distributions, however, most primary studies assume normal distribution in

the underlying populations. According to Glas et al. [17], the standardized

mean difference smdu∗t∗ in a study u at a time point t can be estimated by

ˆsmdu∗t∗ = Φ−1

(
nsu1t∗
nu1t∗

)
− Φ−1

(
nsu2t∗
nu2t∗

)
, (4.20)

with Φ−1 referring to the inverse cumulative density function of the standard

normal distribution, and nsu1t∗
nu1t∗

and nsu2t∗
nu2t∗

being the success proportions in

the intervention and control groups.

The standard error sesmdu∗t∗ is estimated by

ŝesmdu∗t∗ =

 2×π×nsu1t∗
nu1t∗

(1−nsu1t∗
nu1t∗

)×e
(Φ−1(

nsu1t∗
nu1t∗

))2

nu1t∗

+
2×π×nsu2t∗

nu2t∗
(1−nsu2t∗

nu2t∗
)×e

(Φ−1(
nsu2t∗
nu2t∗

))2

nu2t∗


1
2

. (4.21)
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4.8.3 Method by Hedges and Olkin

Another method that assumes normal distribution in the underlying popu-

lations is performed by calculating the biserial-phi correlation coefficient ϕbis

based on the phi coefficient ϕ and transforming the biserial-phi coefficient,

which was published by Thorndike in 1949 [18], into the standardized mean

difference [19].

The phi coefficient ϕ is calculated from the 2× 2 contingency table by

ϕ =
nsu1t∗ × nfu2t∗ − nfu1t∗ × nsu2t∗√
nu1t∗ × nu2t∗ × nsu∗t∗ × nfu∗t∗

(4.22)

The biserial-phi correlation coefficient is calculated by

ϕbis =

√
nsu∗t∗
nu∗t∗

×
(
1− nsu∗t∗

nu∗t∗

)
Φ
(

nsu∗t∗
nu∗t∗

) × ϕ, (4.23)

where nsu∗t∗
nu∗t∗

is the global success proportion and Φ the cumulative density

function of the standard normal distribution.

Based on the biserial-phi correlation coefficient, the standardized mean

difference smdu∗t∗ in a study u at a time point t can be estimated by

ˆsmdu∗t∗ =
ϕbis√
1− ϕ2

bis

×

√
(nu∗t∗ − 2)× nu∗t∗

nu1t∗ × nu2t

, (4.24)

with nu∗t∗ − 2 being the degrees of freedom.

The standard error sesmdu∗t∗ is estimated by

ŝesmdu∗t∗ =

√√√√√√ nsu∗t∗
nu∗t∗

×
(
1− nsu∗t∗

nu∗t∗

)
× (1− ϕ2)× (nu∗t∗)(

Φ
(

nsu∗t∗
nu∗t∗

))2

× nu1t∗ × nu2t∗ × (1− ϕ2
bis)

3
, (4.25)

where Φ refers to the cumulative density function of the standard normal
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distribution.

4.9 Obtaining Mean Change from Baseline

with Standard Deviation from Mean Base-

line, Mean Postintervention, Mean Base-

line Standard Deviation, and Mean Postin-

tervention Standard Deviation with a Method

by Follmann et al.

For interventional studies, there is an additional method that is useful for

obtaining the mean change from baseline with standard deviation from in-

formation on baseline and postintervention measurements [20].

The mean change from baseline x̄ug3∗ for a participant group g within a

study u can simply be calculated by substracting the baseline mean x̄ug1∗

from the postintervention mean x̄ug2∗:

x̄ug3∗ = x̄ug2∗ − x̄ug1∗. (4.26)

The standard deviation of the change from baseline sug3∗ can be calculated

by

sug3∗ =
√

s2ug1∗ + s2ug2∗ − (2× rug∗∗ × sug1∗ × sug2∗), (4.27)

where sug1∗ refers to the baseline standard deviation, sug2∗ to the postinter-

vention standard deviation, and rug∗∗ to the correlation coefficient between

baseline and postintervention measurements in a participant group g within

a study u.

This correlation coefficient rug∗∗ is usually unknown, however, it can be

substituted by a reasonable guess or estimated based on information from
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other included studies for whom mean and standard deviation are available

for baseline measurements, postintervention measurements, and the change

from baseline.

If a study u provides the latter information for a participant group g, the

correlation coefficient rug∗∗ can be calculated by

rug∗∗ =
s2ug1∗ + s2ug2∗ − s2ug3∗
2× sug1∗ × sug2∗

. (4.28)

For participant groups for whom the standard deviation of the change from

baseline is missing, it makes intuitively sense to take the weighted average

across all participant groups for whom the above mentioned information was

provided to estimate missing rug∗∗ values. This is, however, not explicitly

mentioned by Follmann et al. [20]. The correlation coefficient r̂∗g∗∗ for a

participant group g in studies in which the mean change from baseline with

standard deviation is missing is then estimated by

r̂∗g∗∗ =

∑U
u=1

∑G
g=1 nug∗∗ × rug∗∗∑U

u=1

∑G
g=1 nug∗∗

, (4.29)

where rug∗∗ refers to correlation coefficients that can be calculated according

to equation 3.28 and nug∗∗ to the number of patients in a patient group g

within a study u corresponding to rug∗∗. If it is assumed that correlation coef-

ficients differ between intervention and control groups, the weighted average

should be calculated separately for intervention and control groups.
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Chapter 5

Effect Measure Calculation

5.1 Choice of Effect Measure

To summarize the strength of the link between an exposure and an outcome,

effect measures are calculated [4]. Most commonly, an outcome is compared

between an exposed and a nonexposed group for this purpose [5]. Effect

measures can then either be ratio or difference measures, and the types of

effect measures with corresponding types of outcome data needed are listed

in Appendix 2. A continuous outcome measured in two groups of participants

can be compared between these groups by calculating the absolute difference

in means, the standardized difference in means, or the ratio of means.

The ratio of means is rarely used. It is relatively challenging to inter-

pret and cannot be applied for comparing the change from baseline since

the change from baseline can be 0 or positive for one participant group and

negative for the other. The ratio of means can be used to pool the results

of studies that measured the same outcome but with different tools or on

different scales. For example, the severity of atopic dermatitis can be mea-

sured using different scores. It is important to mention that the lower limits

must be comparable when using the ratio of means. Because of its scarce use

and described disadvantages, the ratio of means is not further covered in the
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following.

The absolute difference in means is easy to interpret and has the advan-

tage that it can be used to pool both postinterventional measurements and

change from baseline measurements in one analysis. It is a common problem

that some studies included in a meta-analysis published postintervention

measurements while others published change from baseline measurements.

Above described methods can in many cases be used to obtain the change

from baseline and postintervention measurements, but in some cases, this

may not be possible. The main disadvantage of choosing the absolute differ-

ence in means as effect measure is that the results of studies that measured

the same outcome with different tools or on different scales must be analyzed

separately.

Choosing the standardized difference allows to pool the results of studies

that measured the same outcome with different tools or on different scales,

even if the lower limits are not comparable. Furthermore, studies that di-

chotomized a continuous outcome can be included in the analysis since previ-

ously described methods for the retransformation of a dichotomized continu-

ous outcome result in an estimation for the standardized difference in means.

On the downside, the interpretation of the standardized difference in means

can be more challenging than the interpretation of the absolute difference in

means, and the usage of the standardized difference in means does not al-

low to pool both postinterventional measurements and change from baseline

measurements in one analysis.

In summary, the absolute difference in means should be used for easy

interpretation and to pool both postinterventional measurements and change

from baseline measurements in one analysis. The standardized difference in

means should be used used to pool the results of studies that measured the

same outcome with different tools or on different scales and for including

studies that dichotomized a continuous outcome.
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5.2 Calculation of the Absolute Difference in

Means

Let’s assume that a normally distributed endpoint exists in two separate

populations (intervention vs. control). The absolute difference in means

δ∗∗t∗ at a time point t can then be defined by

δ∗∗t∗ = µ∗1t∗ − µ∗2t∗, (5.1)

with µ∗1t∗ referring to the population mean in the intervention group at a

time point t and µ∗2t∗ referring to the population mean in the control group

at a time point t.

A meta-analysis is usually performed to estimate parameters of a large

population. The absolute difference in means between two populations δ∗∗t∗

at a time point t is estimated in a meta-analysis by pooling the absolute

differences in means at time point t of studies included in the meta-analysis.

The absolute difference in means du∗t∗ in a single included study u at a time

point t can be calculated by

du∗t∗ = xu1t∗ − xu2t∗, (5.2)

with xu1t∗ referring to the mean of outcome measurements in the interven-

tion group at a time point t and xu2t∗ referring to the mean of outcome

measurements in the control group at a time point t.

With the assumption of equal standard deviations in the intervention and

control group σ2
∗1t∗ and σ2

∗2t∗, the standard error of du∗t∗ can be calculated by

sedu∗t∗ =

√
nu1t∗ + nu2t∗

nu1t∗ × nu2t∗
× s2u∗t∗, (5.3)

where nu1t∗ refers to the sample size in the intervention group at a time point

t, nu2t∗ to the sample size in the control group at a time point t, and su∗t∗ to
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the pooled standard deviation in a study u at a time point t [21]. The pooled

standard deviation can be calculated by weighting the standard deviations in

the groups by the sample size of each group. Consequently, su∗t∗ is calculated

by

su∗t∗ =

√
(nu1t∗ − 1)× s2u1t∗ + (nu2t∗ − 1)s2u2t∗

nu1t∗ + nu2t∗ − 2
, (5.4)

where su1t∗ refers to the standard deviation in the intervention group at a

time point t and su2t∗ to the standard deviation in the control group at a

time point t [21]. Combining Formula 5.4 and Formula 5.3, the standard

error of du∗t∗ can be calculated by

sedu∗t∗ =

√
nu1t∗ + nu2t∗

nu1t∗ × nu2t∗
× (nu1t∗ − 1)× s2u1t∗ + (nu2t∗ − 1)s2u2t∗

nu1t∗ + nu2t∗ − 2
. (5.5)

5.3 Calculation of the Standardized Differ-

ence in Means

The standardized mean difference shows the effect measured in a study in

relation to the between-participant variability in the outcome. Depending on

the chosen measure of between-participant variability, several modifications

of the standardized mean difference can be calculated. Hedges’ g is the most

popular modification, perhaps also because of its use in Cochrane reviews [5].

Let’s again assume that a normally distributed endpoint exists in two

separate populations (intervention vs. control). The standardized difference

in means can then be defined by

λ∗∗t∗ =
µ∗1t∗ − µ∗2t∗

σ∗∗t∗
, (5.6)

with µ∗1t∗ referring to the population mean in the intervention group at a

time point t, µ∗2t∗ referring to the population mean in the control group
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at a time point t, and σ∗∗t∗ referring to the common population standard

deviation at a time point t [15, 19].

The population standardized difference in means λ∗∗t∗ at a time point t

can be estimated in a meta-analysis by pooling the standardized absolute

differences in means of included studies at time point t (Chapter 6). The

standardized difference in means smdu∗t∗ in a single study u at a time point

t can be calculated by

smdu∗t∗ =
xu1t∗ − xu2t∗

su∗t∗
, (5.7)

with xu1t∗ referring to the mean of outcome measurements in the intervention

group at a time point t, xu2t∗ referring to the mean of outcome measurements

in the control group at a time point t, su∗t∗ referring to the pooled standard

deviation in the study u at a time point t, with xu1tp ∼ N(xu1t∗, s
2
u1t∗), and

with xu2tp ∼ N(xu2t∗, s
2
u2t∗).

By substituting the pooled standard deviation su∗t∗ in formula 5.7 with

formula 5.4, the standardized difference in means smdu∗t∗ in a study u at a

time point t can be calculated by

smdu∗t∗ =
xu1t∗ − xu2t∗√

(nu1t∗−1)×s2u1t∗+(nu2t∗−1)s2u2t∗
nu1t∗+nu2t∗−2

, (5.8)

which is called Hedges’ g [19].

Hedges’ g shows a positive bias for small sample sizes [19]. To account

for this bias, Hedges and Olkin proposed the correction factor 1 − 3
4×nu∗t∗−1

(Equation 10, page 81). Its application reveals a value commonly referred to

as Hedges’ adjusted g:

smdu∗t∗ =
xu1t∗ − xu2t∗√

(nu1t∗−1)×s2u1t∗+(nu2t∗−1)s2u2t∗
nu1t∗+nu2t∗−2

× (1− 3

4× nu∗t∗ − 1
). (5.9)
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The standard error of Hedges’ adjusted g is calculated by

sesmdu∗t∗ =

√
nu1t∗ + nu2t∗

nu1t∗ × nu2t∗
+

smd2u∗t∗
2(nu1t∗ + nu2t∗)

. (5.10)
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Chapter 6

Pooling Effect Measures

The final synthesis of evidence in meta-analyses is done by pooling effect

measures from individual studies. The pooled effect θ̂∗∗t∗ at a time point t,

an estimate of the population effect θ∗∗t∗, is calculated by the weighted mean

of effect measures across all studies

θ̂∗∗t∗ =

∑U
u=1 wu∗t∗θ̂u∗t∗∑U

u=1 wu∗t∗
, (6.1)

where wu∗t∗ is the weight of an individual study u at time point t and θ̂u∗t∗

the effect estimate of an individual study u at time point t [22].

How the weight of an individual study wu∗t∗ is calculated differs depending

on whether a fixed-effect or random-effects model is applied.

In the fixed-effect model, one true or common effect size underlying all in-

cluded individual studies is assumed. Applying the inverse variance method,

where more weight is given to studies reporting a more precise effect estimate,

the weight in the fixed-effect model can be calculated by

wfixedu∗t∗ =
1

se2
θ̂u∗t∗

, (6.2)

with se2
θ̂u∗t∗

referring to the square of the standard error of the effect estimate
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of an individual study u at time point t.

In contrary, the true effect size is assumed to vary between individual

studies in the random-effects model. Different true effect sizes may be the

result of differences in study populations and applied methods between in-

cluded studies. The difference in the true effect size between studies results

in an additional component of variance that has to be included in the inverse

variance method for calculating the weight wu∗t∗ of an individual study u at

time point t, the between-study variance τ 2∗∗t∗ at time point t. The weight in

the random-effects model is calculated by

wrandomu∗t∗ =
1

se2
θ̂u∗t∗

+ τ 2∗∗t∗
, (6.3)

where se2
θ̂u∗t∗

is the square of the standard error of the effect estimate of an

individual study u at time point t, similar to the fixed-effect model, and τ 2∗∗t∗

the between-study variance at time point t, which refers to the variance of

the true effect size between studies. The between-study variance τ 2∗∗t∗ can

conceptually be estimated in a three-step process [22]. First, the total study

to-study variation is calculated. Second, it is estimated how much the effect

estimates of the individual studies would differ given that the true effect

sizes would be the same across studies. Third, the between-study variance

in the true effect sizes is estimated by calculating the difference in the two

latter variances. One method following this concept is the DerSimonian and

Laird method, also referred to as the weighted method of moments [23] First,

the q statistic, a standardized and weighted sum of squares of the effect size

estimates about the fixed-effect estimate, is calculated by

q =
u=1∑
U

wu∗t∗(θ̂u∗t∗ − θ̂∗∗t∗)
2 =

U∑
u=1

(θ̂u∗t∗ − θ̂fixed∗∗t∗)
2

se2
θ̂u∗t∗

. (6.4)

Second, the degrees of freedom df , which represent the expected value of the
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q statistic in case all studies share the same effect size, are calculated by

df = U − 1, (6.5)

where U refers to the number of included studies. Last, the between-study

variance τ 2∗∗t∗ is estimated by

τ 2∗∗t∗ =
Q− df

c
, (6.6)

where dividing by

c =
U∑

u=1

wfixedu∗t∗ −
∑U

u=1 w
2
fixedu∗t∗∑U

u=1 wfixedu∗t∗

(6.7)

cancels the standardization. Besides the DerSimonian and Laird method,

other methods for estimating the between-study variance τ 2 such as maxi-

mum likelihood estimation or restricted maximum likelihood estimation can

be applied [22].

Since the inverse of the variance is used for weighting, the inverse of the

weight can be used to estimate the uncertainty in the pooled effect. More

specifically, the variance in the pooled effect, which is the squared standard

error of the pooled effect, is estimated by

se2
θ̂2∗∗t∗

=
1∑U

u=1 wu∗t∗
, (6.8)

where the weights of the individual studies u are summed across studies.

Consequently, the square root can be used to estimate the standard error by

seθ̂∗∗t∗ =
√

se2
θ̂2∗∗t∗

. (6.9)
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The 95% confidence interval can be estimated by

llθ̂∗∗t∗ = θ̂∗∗t∗ − 1.96× seθ̂∗∗t∗ (6.10)

and

ulθ̂∗∗t∗ = θ̂∗∗t∗ + 1.96× seθ̂∗∗t∗ , (6.11)

where llθ̂ refers to the lower limit and ulθ̂ to the upper limit [22].

For testing the null hypothesis that the pooled effect does not differ from

a value h, the z statistic can be calculated by

z =
θ̂∗∗t∗ − h

seθ̂
. (6.12)

The p-value for a two-tailed test can afterwards be obtained by

p = 2[1− (Φ(|z|))], (6.13)

where Φ(|z|) refers to the standard normal cumulative distribution [22].
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Chapter 7

Evaluation of Bias in

Simulation Studies

In 2017, Morris, White, and Crowther published a structered approach for

planning, conducting, and reporting simulation studies named the ADEMP

approach [24]. ADEMP is an acronym for: Aims, Data-generating mech-

anisms, Methods, Estimands, and Performance measures. The simulation

studies of this thesis followed the ADEMP approach.

7.1 Methods

7.1.1 Aims

Different conversion and imputation methods for differently or incompletely

reported continuous outcomes were described in Chapter 3. The simulation

studies of this thesis aimed at comparing these methods in terms of precision

when applied for computing uniform effect measures that are pooled in a

meta-analysis. The term uniform effect measures refers to effect measures

that are of the same form and can therefore be pooled.
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7.1.2 Data-Generation Mechanisms

The data of 1000 meta-analyses were simulated per data generation scenario.

Each meta-analysis included a random number of interventional controlled

studies that was uniformly distributed between 10 and 30. The number of

1000 meta-analyses per data generation scenario was a compromise between

time expense and accuracy.

Simulation of Individual Patient Data

Continuous outcome values xugtp for a patient p at time point t in group g in

study u were generated by performing parametric draws from known models.

The following models were applied for baseline (t = 1), postintervention

(t = 2), and change from baseline values (t = 3):

xug1p = xu∗1∗ + eug1p (7.1)

xug2p = xug1p + du∗2∗ × kugtp + eug2p (7.2)

xug3p = xug2p − xug1p (7.3)

The factors included in these models are described in the following.

• xu∗1∗ refers to the mean outcome in study u at baseline (t = 1). It

was assumed to be normally distributed around 100 with a standard

deviation of 5, xu∗1∗ ∼ N(100, 25).

• eug1p refers to an individual baseline residual. It could vary across

data-generation mechanisms in two ways.

– Symmetric distribution of the individual baseline residual: The in-

dividual baseline residual was assumed to be normally distributed

around 0 with a variance of s2u∗∗∗, eug1p ∼ N(0, s2u∗∗∗). The stan-

dard deviation of the individual baseline residual su∗∗∗ might dif-

fer across studies u since patients may be more similar in some
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studies compared to others. The standard deviation of the indi-

vidual baseline residual cannot be negative and was assumed to

be gamma distributed with shape parameter α = 10 and scale

parameter β = 2, su∗∗∗ ∼ Gamma(10, 2).

– Skewed distribution of the individual baseline residual: For gen-

erating skewed individual baseline residuals, a gamma distribu-

tion with shape parameter α = 6 and scale parameter βu∗∗∗ was

used. Since a gamma distribution only includes positive values,

the expected value of the used gamma distribution α × βu∗∗∗

was subtracted from each value drawn from the gamma distri-

bution to obtain positive and negative individual baseline resid-

uals. Consequently, the individual baseline residual plus the ex-

pected value of the gamma distribution was gamma distributed,

eug1p + α × βu∗∗∗ ∼ Gamma(6, βu∗∗∗). The scale parameter βu∗∗∗

was assumed to differ across studies u because patients may be

more similar in some studies compared to others. It was assumed

to be gamma distributed with shape parameter α = 4 and scale

parameter β = 2, βu∗∗∗ ∼ Gamma(4, 2).

• du∗2∗ refers to the treatment effect in study u. It could vary across

data-generation mechanisms in two ways:

– Small treatment effect size in the studies: The treatment effect size

in the studies was assumed to be normally distributed around the

population treatment effect δ∗∗2∗ of 10 with a standard deviation

of 4, du∗2∗ ∼ N(10, 16).

– Large treatment effect size in the studies: The treatment effect size

in the studies was assumed to be normally distributed around the

population treatment effect δ∗∗2∗ of 20 with a standard deviation

of 4, du∗2∗ ∼ N(20, 16).

39



• kugtp in Formula 7.2 is a treatment indicator. It is ku1tp = 1 in the inter-

vention group (g = 1) and ku2tp = 0 in the control group (g = 2). One

study included nu∗∗∗ patients with nug∗∗ = nu∗∗∗
2

patients per group.

The sample size per group nug∗∗ could vary across data-generation

mechanisms in two ways.

– Small sample size per group: The sample size per group was as-

sumed to be uniformly distributed between 10 and 30, nug∗∗ ∼
U(10, 30).

– Large sample size per group: The sample size per group was as-

sumed to be uniformly distributed between 30 and 100, nug∗∗ ∼
U(30, 100).

• eug2p refers to an individual postintervention residual. It could vary

across data generation mechanisms in two ways.

– Symmetric distribution of the individual postintervention resid-

ual: The individual postintervention residual was assumed to be

normally distributed around 0 with a variance of s2u∗∗∗, eug2p ∼
N(0, s2u∗∗∗). The standard deviation of the individual postinter-

vention residual su∗∗∗ might differ across studies u since patients

may be more similar in some studies compared to others. The

standard deviation of the individual postintervention residual can-

not be negative and was assumed to be gamma distributed with

shape parameter α = 10 and scale parameter β = 2, su∗∗∗ ∼
Gamma(10, 2).

– Skewed distribution of the individual postintervention residual:

For generating skewed individual postintervention residuals, a gamma

distribution with shape parameter α = 6 and scale parameter

βu∗∗∗ was used. Since a gamma distribution only includes pos-

itive values, the expected value of the used gamma distribution
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α× βu∗∗∗ was subtracted from each value drawn from the gamma

distribution to obtain positive and negative individual baseline

residuals. Consequently, the individual baseline residual plus the

expected value of the gamma distribution was gamma distributed,

eug1p + α × βu∗∗∗ ∼ Gamma(6, βu∗∗∗). The scale parameter βu∗∗∗

was assumed to differ across studies u because patients may be

more similar in some studies compared to others. It was assumed

to be gamma distributed with shape parameter α = 4 and scale

parameter β = 2, βu∗∗∗ ∼ Gamma(4, 2).

As mentioned, four factors could vary across data-generation mechanisms

in two ways, respectively: the individual baseline residual, the treatment

effect size, the sample size per group, and the individual postintervention

residual.

If the individual baseline residual was assumed to be normally distributed,

the individual postintervention residual was also assumed to be normally

distributed. If the individual baseline residual followed a gamma distribution,

the individual postintervention residual did so as well. Otherwise, a fully

factorial design was executed.

Computation of Study Level Data

For each group g in each study u, the following measures were calculated for

baseline, postintervention, and change from baseline values, respectively:

• Mean xugt∗

• Standard deviation sugt∗

• Standard error of the mean seugt∗

• 95% confidence interval of the mean with lower limit llugt∗ and upper

limit ulugt∗
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• Median mugt∗

• Range with smallest value augt∗ and largest value bugt∗

• Interquartile range with first quartile lqugt∗ and third quartile uqugt∗

• Numbers of patients after dichotomization with success nsugt∗ and fail-

ure nsugt∗

For dichotomization, the numbers of patients with values greater than or

equal to (success) and less than (failure) a threshold were calculated. The

threshold yu∗t∗ in a study u at time point t was assumed to be normally

distributed with parameters dependent on time point and effect size (Table

7.1).

Time Point Effect Size Mean Standard Deviation

Baseline Small 110 2

Baseline Large 120 2

Postintervention Small 110 2

Postintervention Large 120 2

Change from Baseline Small 10 2

Change from Baseline Large 20 2

Table 7.1: Parameters of the normal distribution assumed for the threshold
used for dichotomizing.

For comparing methods for imputing missing standard deviation, it was

assumed that the standard deviation for a study was missing with a proba-

bility of 0.25.

For the evaluation of the method by Follmann et al. for obtaining mean

change from baseline with standard deviation from mean baseline with stan-

dard deviation and mean postintervention with standard deviation, it was

assumed that the standard deviation of the mean change from baseline was
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missing with a probability of 0.25 while mean baseline standard deviation

and mean postintervention standard deviation were given.

7.1.3 Estimands

Simulation studies typically evaluate or compare methods for estimating pop-

ulation quantities [24]. Morris et al. [24] referred to these as estimands, which

is retained here. The following estimands were defined:

• Population absolute difference in means between the change from base-

line values of the intervention and control group δ∗∗3∗

• Population standardized difference in means between the change from

baseline values of the intervention and control group λ∗∗3∗

7.1.4 Methods

In Chapter 3, the following conversion and imputation methods for the con-

version and imputation of differently or incompletely reported continuous

outcomes were described.

• Obtaining Mean and Standard Deviation from Mean and Standard

Error by Algebraic Conversion

• Obtaining Mean and Standard Deviation from Mean and Confidence

Interval by Algebraic Conversion

• Obtaining Mean and Standard Deviation from Mean and Range

– The ”Range”-Method

– Method by Walter and Yao

• Obtaining Mean and Standard Deviation form Median and Range

– Method by Hozo et al.
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– Method by Wan et al.

• Obtaining Mean and Standard Deviation from Median and Interquar-

tile Range

– Method by Wan et al.

– Cochrane Method

• Obtaining Mean and Standard Deviation form Median, Range, and

Interquartile Range

– Method by Bland

– Method by Wan et al.

• Obtaining Mean and Standard Deviation from Mean and Missing Stan-

dard Deviation by Imputation

– Method by Furukawa et al.

– Method by Marinho et al.

• Obtaining the Standardized Mean Difference and Standard Error from

a 2 x 2 Contingency Table for a Dichotomized Continuous Outcome

– Method by Cox

– Method by Glas et al.

– Method by Hedges and Olkin

• Obtaining Mean Change from Baseline with Standard Deviation from

Mean Baseline with Standard Deviation and Mean Postintervention

with Standard Deviation with a Method by Follmann et al.

All of these methods except the algebraic conversion methods were eval-

uated in terms of causing bias when applied for computing uniform effect

measures for interventional studies that are pooled in a meta-analysis.
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For methods applied to obtain the standardized mean difference and stan-

dard error from a 2 x 2 contingency table for a dichotomized continuous out-

come, only the population standardized difference in means was applicable

as estimand.

7.1.5 Performance Measures

Mean bias of the pooled effect estimate and coverage of the 95% confidence

interval with the corresponding monte carlo standard errors were used as

performance measures.

7.2 Results

7.2.1 Obtaining Mean and Standard Deviation from

Mean and Range

The detailed results for the “range”-method and the method by Walter and

Yao are listed in Table 7.2 and Table 7.3.

After application of these methods for obtaining mean and standard de-

viation from mean and range of a continuous outcome measured in inter-

vention and control groups included in studies that are included in meta-

analyses, there are no major differences in bias and coverage between the

meta-analytically pooled treatment effects, except in case of skewed distribu-

tions of individual residuals, large treatment effects, as well as large samples.

In this case, the “range” method performed better and resulted in less bias

and higher coverage.
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The “Range”-Method

Absolute difference in means

Distribution Effect Sample Bias MCSE Coverage MCSE

Symmetric Small Small -0.035 0.054 0.930 0.008

Skewed Small Small 0.084 0.052 0.919 0.009

Symmetric Large Small 0.004 0.055 0.928 0.008

Skewed Large Small 0.055 0.052 0.917 0.009

Symmetric Small Large 0.037 0.041 0.933 0.008

Skewed Small Large -0.009 0.040 0.921 0.009

Symmetric Large Large -0.022 0.040 0.924 0.008

Skewed Large Large 0.049 0.040 0.923 0.008

Standardized difference in means

Distribution Effect Sample Bias MCSE Coverage MCSE

Symmetric Small Small 0.072 0.004 0.894 0.010

Skewed Small Small 0.194 0.008 0.731 0.014

Symmetric Large Small 0.147 0.007 0.821 0.012

Skewed Large Small 0.380 0.014 0.519 0.016

Symmetric Small Large -0.031 0.002 0.877 0.010

Skewed Small Large 0.070 0.004 0.879 0.010

Symmetric Large Large -0.063 0.004 0.813 0.012

Skewed Large Large 0.130 0.007 0.840 0.012

Table 7.2: Performance measures for estimating the population absolute dif-
ference in means δ∗∗3∗ and population standardized difference in means λ∗∗3∗
between change from baseline values of the intervention and control group.
Distribution = distribution of individual baseline residual eug1p and individ-
ual postintervention residual eug2p; effect = treatment effect du∗2∗; sample
= sample size nug∗∗; bias = mean bias of the absolute difference in means
biasδ̂∗∗3∗ and mean bias of the standardized difference in means biasλ̂∗∗3∗

; cov-
erage = coverage of absolute difference in means coverδ̂∗∗3∗ and coverage of
the standardized difference in means coverλ̂∗∗3∗

; MCSE = monte carlo stan-
dard error.
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Method by Walter and Yao

Absolute difference in means

Distribution Effect Sample Bias MCSE Coverage MCSE

Symmetric Small Small -0.054 0.055 0.921 0.009

Skewed Small Small 0.091 0.052 0.916 0.009

Symmetric Large Small 0.001 0.055 0.922 0.008

Skewed Large Small 0.054 0.052 0.912 0.009

Symmetric Small Large 0.040 0.041 0.930 0.008

Skewed Small Large -0.014 0.039 0.923 0.008

Symmetric Large Large -0.019 0.040 0.926 0.008

Skewed Large Large 0.044 0.039 0.931 0.008

Standardized difference in means

Distribution Effect Sample Bias MCSE Coverage MCSE

Symmetric Small Small 0.031 0.003 0.926 0.008

Skewed Small Small 0.143 0.006 0.817 0.012

Symmetric Large Small 0.064 0.005 0.910 0.009

Skewed Large Small 0.278 0.011 0.689 0.015

Symmetric Small Large 0.049 0.003 0.894 0.010

Skewed Small Large 0.166 0.007 0.719 0.014

Symmetric Large Large 0.093 0.005 0.864 0.011

Skewed Large Large 0.319 0.012 0.553 0.016

Table 7.3: Performance measures for estimating the population absolute dif-
ference in means δ∗∗3∗ and population standardized difference in means λ∗∗3∗
between change from baseline values of the intervention and control group.
Distribution = distribution of individual baseline residual eug1p and individ-
ual postintervention residual eug2p; effect = treatment effect du∗2∗; sample
= sample size nug∗∗; bias = mean bias of the absolute difference in means
biasδ̂∗∗3∗ and mean bias of the standardized difference in means biasλ̂∗∗3∗

; cov-
erage = coverage of absolute difference in means coverδ̂∗∗3∗ and coverage of
the standardized difference in means coverλ̂∗∗3∗

; MCSE = monte carlo stan-
dard error.
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7.2.2 Obtaining Mean and Standard Deviation from

Median and Range

Bias and coverage after application of the method by Hozo et al. and the

method by Wan et al. for obtaining mean and standard deviation from

median and range can be found in Table 7.4 and Table 7.5.

Overall, the method by Wan et al. performs better. There is an overesti-

mation of the population standardized difference in means after application

of both methods, especially when the distributions of individual residuals are

skewed positively.
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Method by Hozo et al.

Absolute difference in means

Distribution Effect Sample Bias MCSE Coverage MCSE

Symmetric Small Small -0.094 0.060 0.936 0.008

Skewed Small Small 0.086 0.057 0.925 0.008

Symmetric Large Small -0.108 0.062 0.919 0.009

Skewed Large Small -0.069 0.059 0.928 0.008

Symmetric Small Large 0.020 0.047 0.919 0.009

Skewed Small Large -0.014 0.043 0.918 0.009

Symmetric Large Large 0.019 0.044 0.930 0.008

Skewed Large Large 0.049 0.043 0.914 0.009

Standardized difference in means

Distribution Effect Sample Bias MCSE Coverage MCSE

Symmetric Small Small 0.045 0.004 0.912 0.009

Skewed Small Small 0.156 0.007 0.802 0.013

Symmetric Large Small 0.073 0.005 0.903 0.009

Skewed Large Small 0.262 0.011 0.709 0.014

Symmetric Small Large 0.071 0.004 0.861 0.011

Skewed Small Large 0.190 0.008 0.688 0.015

Symmetric Large Large 0.135 0.006 0.800 0.013

Skewed Large Large 0.366 0.014 0.502 0.016

Table 7.4: Performance measures for estimating the population absolute dif-
ference in means δ∗∗3∗ and population standardized difference in means λ∗∗3∗
between change from baseline values of the intervention and control group.
Distribution = distribution of individual baseline residual eug1p and individ-
ual postintervention residual eug2p; effect = treatment effect du∗2∗; sample
= sample size nug∗∗; bias = mean bias of the absolute difference in means
biasδ̂∗∗3∗ and mean bias of the standardized difference in means biasλ̂∗∗3∗

; cov-
erage = coverage of absolute difference in means coverδ̂∗∗3∗ and coverage of
the standardized difference in means coverλ̂∗∗3∗

; MCSE = monte carlo stan-
dard error.
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Method by Wan et al.

Absolute difference in means

Distribution Effect Sample Bias MCSE Coverage MCSE

Symmetric Small Small -0.030 0.060 0.932 0.008

Skewed Small Small 0.112 0.058 0.913 0.009

Symmetric Large Small 0.031 0.061 0.915 0.009

Skewed Large Small 0.043 0.059 0.927 0.008

Symmetric Small Large 0.053 0.049 0.926 0.008

Skewed Small Large 0.028 0.050 0.909 0.009

Symmetric Large Large -0.077 0.049 0.927 0.008

Skewed Large Large 0.020 0.051 0.914 0.009

Standardized difference in means

Distribution Effect Sample Bias MCSE Coverage MCSE

Symmetric Small Small 0.033 0.004 0.926 0.008

Skewed Small Small 0.146 0.007 0.823 0.012

Symmetric Large Small 0.067 0.005 0.904 0.009

Skewed Large Small 0.282 0.012 0.694 0.015

Symmetric Small Large 0.047 0.003 0.905 0.009

Skewed Small Large 0.166 0.007 0.744 0.014

Symmetric Large Large 0.086 0.005 0.885 0.010

Skewed Large Large 0.314 0.012 0.588 0.016

Table 7.5: Performance measures for estimating the population absolute dif-
ference in means δ∗∗3∗ and population standardized difference in means λ∗∗3∗
between change from baseline values of the intervention and control group.
Distribution = distribution of individual baseline residual eug1p and individ-
ual postintervention residual eug2p; effect = treatment effect du∗2∗; sample
= sample size nug∗∗; bias = mean bias of the absolute difference in means
biasδ̂∗∗3∗ and mean bias of the standardized difference in means biasλ̂∗∗3∗

; cov-
erage = coverage of absolute difference in means coverδ̂∗∗3∗ and coverage of
the standardized difference in means coverλ̂∗∗3∗

; MCSE = monte carlo stan-
dard error.
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7.2.3 Obtaining Mean and Standard Deviation from

Median and Interquartile Range

Performance measures after application of the method by Wan et al. and the

Cochrane method for obtaining mean and standard deviation from median

and interquartile range can be found in Table 7.6 and Table 7.7.

The application of the method by Wan et al. leads to lower overall bias

and higher coverage than the application of the Cochrane method. After ap-

plying both methods, there is an overestimation of the standardized popula-

tion mean difference, especially if the distributions of the individual residuals

are positively skewed.
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Method by Wan et al.

Absolute difference in means

Distribution Effect Sample Bias MCSE Coverage MCSE

Symmetric Small Small -0.029 0.058 0.932 0.008

Skewed Small Small 0.078 0.055 0.901 0.009

Symmetric Large Small -0.036 0.059 0.924 0.008

Skewed Large Small 0.050 0.053 0.921 0.009

Symmetric Small Large 0.010 0.042 0.930 0.008

Skewed Small Large -0.002 0.040 0.932 0.008

Symmetric Large Large -0.009 0.041 0.926 0.008

Skewed Large Large 0.038 0.040 0.924 0.008

Standardized difference in means

Distribution Effect Sample Bias MCSE Coverage MCSE

Symmetric Small Small 0.034 0.004 0.930 0.008

Skewed Small Small 0.157 0.007 0.807 0.012

Symmetric Large Small 0.066 0.005 0.914 0.009

Skewed Large Small 0.306 0.012 0.649 0.015

Symmetric Small Large 0.047 0.003 0.898 0.010

Skewed Small Large 0.182 0.007 0.677 0.015

Symmetric Large Large 0.092 0.005 0.851 0.011

Skewed Large Large 0.350 0.013 0.481 0.016

Table 7.6: Performance measures for estimating the population absolute dif-
ference in means δ∗∗3∗ and population standardized difference in means λ∗∗3∗
between change from baseline values of the intervention and control group.
Distribution = distribution of individual baseline residual eug1p and individ-
ual postintervention residual eug2p; effect = treatment effect du∗2∗; sample
= sample size nug∗∗; bias = mean bias of the absolute difference in means
biasδ̂∗∗3∗ and mean bias of the standardized difference in means biasλ̂∗∗3∗

; cov-
erage = coverage of absolute difference in means coverδ̂∗∗3∗ and coverage of
the standardized difference in means coverλ̂∗∗3∗

; MCSE = monte carlo stan-
dard error.
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Cochrane Method

Absolute difference in means

Distribution Effect Sample Bias MCSE Coverage MCSE

Symmetric Small Small 0.017 0.064 0.931 0.008

Skewed Small Small 0.117 0.059 0.910 0.009

Symmetric Large Small -0.085 0.064 0.928 0.008

Skewed Large Small 0.024 0.058 0.930 0.008

Symmetric Small Large 0.006 0.047 0.920 0.009

Skewed Small Large 0.000 0.042 0.925 0.008

Symmetric Large Large 0.010 0.044 0.934 0.008

Skewed Large Large 0.045 0.043 0.919 0.009

Standardized difference in means

Distribution Effect Sample Bias MCSE Coverage MCSE

Symmetric Small Small 0.080 0.005 0.884 0.010

Skewed Small Small 0.212 0.009 0.712 0.014

Symmetric Large Small 0.149 0.007 0.843 0.012

Skewed Large Small 0.412 0.015 0.503 0.016

Symmetric Small Large 0.061 0.004 0.867 0.011

Skewed Small Large 0.200 0.008 0.637 0.015

Symmetric Large Large 0.122 0.006 0.803 0.013

Skewed Large Large 0.385 0.014 0.431 0.016

Table 7.7: Performance measures for estimating the population absolute dif-
ference in means δ∗∗3∗ and population standardized difference in means λ∗∗3∗
between change from baseline values of the intervention and control group.
Distribution = distribution of individual baseline residual eug1p and individ-
ual postintervention residual eug2p; effect = treatment effect du∗2∗; sample
= sample size nug∗∗; bias = mean bias of the absolute difference in means
biasδ̂∗∗3∗ and mean bias of the standardized difference in means biasλ̂∗∗3∗

; cov-
erage = coverage of absolute difference in means coverδ̂∗∗3∗ and coverage of
the standardized difference in means coverλ̂∗∗3∗

; MCSE = monte carlo stan-
dard error.
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7.2.4 Obtaining Mean and Standard Deviation from

Median, Range, and Interquartile Range

Performance measures after application of the method by Bland and the

method by Wand et al. for obtaining mean and standard deviation from

median, range, and interquartile range can be found in Table 7.8 and Table

7.9.

There is no larger difference in bias and coverage for the standardized

difference in means. The method by Wan et al. results in less bias and

higher coverage of estimates of the absolute difference in means. Application

of both methods tends to result in an overestimation of both the absolute

and standardized difference in means.
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Method by Bland

Absolute difference in means

Distribution Effect Sample Bias MCSE Coverage MCSE

Symmetric Small Small 0.372 0.059 0.925 0.008

Skewed Small Small 0.489 0.058 0.901 0.009

Symmetric Large Small 0.823 0.065 0.906 0.009

Skewed Large Small 0.857 0.062 0.892 0.010

Symmetric Small Large 0.157 0.043 0.930 0.008

Skewed Small Large 0.137 0.042 0.923 0.008

Symmetric Large Large 0.203 0.043 0.928 0.008

Skewed Large Large 0.279 0.043 0.930 0.008

Standardized difference in means

Distribution Effect Sample Bias MCSE Coverage MCSE

Symmetric Small Small 0.104 0.005 0.848 0.011

Skewed Small Small 0.230 0.009 0.644 0.015

Symmetric Large Small 0.211 0.008 0.698 0.015

Skewed Large Small 0.451 0.016 0.410 0.016

Symmetric Small Large 0.009 0.003 0.925 0.008

Skewed Small Large 0.115 0.006 0.821 0.012

Symmetric Large Large 0.015 0.004 0.932 0.008

Skewed Large Large 0.216 0.009 0.734 0.014

Table 7.8: Performance measures for estimating the population absolute dif-
ference in means δ∗∗3∗ and population standardized difference in means λ∗∗3∗
between change from baseline values of the intervention and control group.
Distribution = distribution of individual baseline residual eug1p and individ-
ual postintervention residual eug2p; effect = treatment effect du∗2∗; sample
= sample size nug∗∗; bias = mean bias of the absolute difference in means
biasδ̂∗∗3∗ and mean bias of the standardized difference in means biasλ̂∗∗3∗

; cov-
erage = coverage of absolute difference in means coverδ̂∗∗3∗ and coverage of
the standardized difference in means coverλ̂∗∗3∗

; MCSE = monte carlo stan-
dard error.
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Method by Wan et al.

Absolute difference in means

Distribution Effect Sample Bias MCSE Coverage MCSE

Symmetric Small Small -0.036 0.056 0.930 0.008

Skewed Small Small 0.083 0.053 0.911 0.009

Symmetric Large Small 0.012 0.057 0.920 0.009

Skewed Large Small 0.056 0.053 0.922 0.008

Symmetric Small Large 0.033 0.042 0.933 0.008

Skewed Small Large 0.014 0.041 0.924 0.008

Symmetric Large Large -0.045 0.042 0.927 0.008

Skewed Large Large 0.026 0.042 0.928 0.008

Standardized difference in means

Distribution Effect Sample Bias MCSE Coverage MCSE

Symmetric Small Small 0.030 0.003 0.925 0.008

Skewed Small Small 0.146 0.006 0.807 0.012

Symmetric Large Small 0.062 0.005 0.915 0.009

Skewed Large Small 0.286 0.012 0.668 0.015

Symmetric Small Large 0.046 0.003 0.902 0.009

Skewed Small Large 0.172 0.007 0.712 0.014

Symmetric Large Large 0.086 0.005 0.866 0.011

Skewed Large Large 0.327 0.013 0.528 0.016

Table 7.9: Performance measures for estimating the population absolute dif-
ference in means δ∗∗3∗ and population standardized difference in means λ∗∗3∗
between change from baseline values of the intervention and control group.
Distribution = distribution of individual baseline residual eug1p and individ-
ual postintervention residual eug2p; effect = treatment effect du∗2∗; sample
= sample size nug∗∗; bias = mean bias of the absolute difference in means
biasδ̂∗∗3∗ and mean bias of the standardized difference in means biasλ̂∗∗3∗

; cov-
erage = coverage of absolute difference in means coverδ̂∗∗3∗ and coverage of
the standardized difference in means coverλ̂∗∗3∗

; MCSE = monte carlo stan-
dard error.

56



7.2.5 Obtaining Mean and Standard Deviation from

Mean and Missing Standard Deviation by Impu-

tation

Bias and coverage after application of the method by Furukawa et al. and the

method by Marinho et al. for the imputation of missing standard deviation

can be found in Table 7.10 and Table 7.11.

There is no larger difference in bias and coverage for the standardized

difference in means. The method by Furukawa et al. results in less bias and

higher coverage of estimates of the standardized difference in means. There

is an overestimation of the standardized difference in means after application

of both methods.
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Method by Furukawa et al.

Absolute difference in means

Distribution Effect Sample Bias MCSE Coverage MCSE

Symmetric Small Small -0.026 0.056 0.944 0.007

Skewed Small Small -0.023 0.056 0.915 0.009

Symmetric Large Small -0.004 0.057 0.929 0.008

Skewed Large Small 0.021 0.051 0.937 0.008

Symmetric Small Large 0.056 0.039 0.944 0.007

Skewed Small Large -0.069 0.038 0.940 0.008

Symmetric Large Large -0.025 0.040 0.922 0.008

Skewed Large Large -0.016 0.041 0.912 0.009

Standardized difference in means

Distribution Effect Sample Bias MCSE Coverage MCSE

Symmetric Small Small 0.021 0.003 0.928 0.008

Skewed Small Small 0.080 0.005 0.868 0.011

Symmetric Large Small 0.037 0.004 0.890 0.010

Skewed Large Small 0.151 0.008 0.770 0.013

Symmetric Small Large 0.032 0.003 0.909 0.009

Skewed Small Large 0.089 0.005 0.838 0.012

Symmetric Large Large 0.061 0.004 0.862 0.011

Skewed Large Large 0.177 0.009 0.680 0.015

Table 7.10: Performance measures for estimating the population absolute
difference in means δ∗∗3∗ and population standardized difference in means
λ∗∗3∗ between change from baseline values of the intervention and control
group. Distribution = distribution of individual baseline residual eug1p and
individual postintervention residual eug2p; effect = treatment effect du∗2∗;
sample = sample size nug∗∗; bias = mean bias of the absolute difference
in means biasδ̂∗∗3∗ and mean bias of the standardized difference in means
biasλ̂∗∗3∗

; coverage = coverage of absolute difference in means coverδ̂∗∗3∗ and
coverage of the standardized difference in means coverλ̂∗∗3∗

; MCSE = monte
carlo standard error.
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Method by Marinho et al.

Absolute difference in means

Distribution Effect Sample Bias MCSE Coverage MCSE

Symmetric Small Small -0.013 0.057 0.938 0.008

Skewed Small Small -0.049 0.055 0.918 0.009

Symmetric Large Small 0.008 0.057 0.929 0.008

Skewed Large Small -0.010 0.050 0.939 0.008

Symmetric Small Large 0.062 0.039 0.940 0.008

Skewed Small Large -0.061 0.038 0.930 0.008

Symmetric Large Large -0.019 0.040 0.920 0.009

Skewed Large Large -0.022 0.041 0.902 0.009

Standardized difference in means

Distribution Effect Sample Bias MCSE Coverage MCSE

Symmetric Small Small 0.030 0.004 0.917 0.009

Skewed Small Small 0.105 0.006 0.835 0.012

Symmetric Large Small 0.056 0.005 0.867 0.011

Skewed Large Small 0.200 0.009 0.712 0.014

Symmetric Small Large 0.040 0.003 0.898 0.010

Skewed Small Large 0.113 0.005 0.795 0.013

Symmetric Large Large 0.078 0.005 0.846 0.011

Skewed Large Large 0.224 0.010 0.615 0.015

Table 7.11: Performance measures for estimating the population absolute
difference in means δ∗∗3∗ and population standardized difference in means
λ∗∗3∗ between change from baseline values of the intervention and control
group. Distribution = distribution of individual baseline residual eug1p and
individual postintervention residual eug2p; effect = treatment effect du∗2∗;
sample = sample size nug∗∗; bias = mean bias of the absolute difference
in means biasδ̂∗∗3∗ and mean bias of the standardized difference in means
biasλ̂∗∗3∗

; coverage = coverage of absolute difference in means coverδ̂∗∗3∗ and
coverage of the standardized difference in means coverλ̂∗∗3∗

; MCSE = monte
carlo standard error.
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7.2.6 Obtaining the Standardized Mean Difference and

Standard Error from a 2 x 2 Contingency Table

for a Dichotomized Continuous Outcome

Bias and coverage after application of the method by Cox, the method by

Glas et al. and the method by Hedges and Olkin for obtaining the standard-

ized mean difference and standard error from a 2 x 2 contingency table for

a dichotomized continuous outcome can be found in Table 7.12, Table 7.13

and Table 7.14.

Both the method by Cox and the method by Glas et al. show better

performance measures than the method by Hedges and Olkin. The methods

of Cox and Glas et al. perform quite similarly, with Cox’s method having a

slight advantage in a majority of the created scenarios.

Method by Cox

Standardized difference in means

Distribution Effect Sample Bias MCSE Coverage MCSE

Symmetric Small Small 0.030 0.004 0.947 0.007

Skewed Small Small 0.042 0.004 0.935 0.008

Symmetric Large Small -0.034 0.005 0.923 0.008

Skewed Large Small -0.155 0.007 0.774 0.013

Symmetric Small Large 0.042 0.003 0.911 0.009

Skewed Small Large 0.080 0.005 0.863 0.011

Symmetric Large Large 0.064 0.004 0.889 0.010

Skewed Large Large -0.015 0.004 0.904 0.009

Table 7.12: Performance measures for estimating the population standard-
ized difference in means λ3 between change from baseline values of the in-
tervention and control group. Distribution = distribution of individual base-
line residual eug1p and individual postintervention residual eug2p; effect =
treatment effect du∗2∗; sample = sample size nug∗∗; bias = mean bias of the
standardized difference in means biasλ̂∗∗3∗

; coverage = coverage of the stan-
dardized difference in means coverλ̂∗∗3∗

; MCSE = monte carlo standard error.
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Method by Glas et al.

Standardized difference in means

Distribution Effect Sample Bias MCSE Coverage MCSE

Symmetric Small Small 0.050 0.004 0.929 0.008

Skewed Small Small 0.059 0.005 0.927 0.008

Symmetric Large Small -0.018 0.004 0.926 0.008

Skewed Large Small -0.139 0.007 0.799 0.013

Symmetric Small Large 0.053 0.003 0.895 0.010

Skewed Small Large 0.087 0.005 0.861 0.011

Symmetric Large Large 0.058 0.004 0.886 0.010

Skewed Large Large -0.024 0.004 0.908 0.009

Table 7.13: Performance measures for estimating the population standard-
ized difference in means λ3 between change from baseline values of the in-
tervention and control group. Distribution = distribution of individual base-
line residual eug1p and individual postintervention residual eug2p; effect =
treatment effect du∗2∗; sample = sample size nug∗∗; bias = mean bias of the
standardized difference in means biasλ̂∗∗3∗

; coverage = coverage of the stan-
dardized difference in means coverλ̂∗∗3∗

; MCSE = monte carlo standard error.
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Method by Hedges and Olkin

Standardized difference in means

Distribution Effect Sample Bias MCSE Coverage MCSE

Symmetric Small Small -0.165 0.006 0.346 0.015

Skewed Small Small -0.202 0.007 0.225 0.013

Symmetric Large Small -0.438 0.014 0.007 0.003

Skewed Large Small -0.563 0.018 0.001 0.001

Symmetric Small Large -0.150 0.005 0.233 0.013

Skewed Small Large -0.184 0.006 0.207 0.013

Symmetric Large Large -0.389 0.012 0.003 0.002

Skewed Large Large -0.505 0.016 0.002 0.001

Table 7.14: Performance measures for estimating the population standard-
ized difference in means λ3 between change from baseline values of the in-
tervention and control group. Distribution = distribution of individual base-
line residual eug1p and individual postintervention residual eug2p; effect =
treatment effect du∗2∗; sample = sample size nug∗∗; bias = mean bias of the
standardized difference in means biasλ̂∗∗3∗

; coverage = coverage of the stan-
dardized difference in means coverλ̂∗∗3∗

; MCSE = monte carlo standard error.
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7.2.7 Obtaining Mean Change from Baseline with Stan-

dard Deviation from Mean Baseline with Stan-

dard Deviation and Mean Postintervention with

Standard Deviation with a Method by Follmann

et al.

Bias and coverage after application of the method by Follmann et al. for

obtaining mean change from baseline with standard deviation from mean

baseline, mean postintervention, mean baseline standard deviation, and mean

postintervention standard deviation can be found in Table 7.15.

There is no method for comparison. There is an overestimation of the

standardized difference in means, especially for skewed distributions of indi-

vidual residuals.
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Absolute difference in means

Distribution Effect Sample Bias MCSE Coverage MCSE

Symmetric Small Small 0.086 0.055 0.936 0.008

Skewed Small Small 0.009 0.053 0.911 0.009

Symmetric Large Small 0.042 0.053 0.940 0.008

Skewed Large Small 0.141 0.050 0.920 0.009

Symmetric Small Large -0.017 0.040 0.926 0.008

Skewed Small Large -0.035 0.040 0.923 0.008

Symmetric Large Large -0.080 0.040 0.934 0.008

Skewed Large Large 0.064 0.040 0.901 0.009

Standardized difference in means

Distribution Effect Sample Bias MCSE Coverage MCSE

Symmetric Small Small 0.042 0.004 0.924 0.008

Skewed Small Small 0.139 0.006 0.808 0.012

Symmetric Large Small 0.074 0.005 0.906 0.009

Skewed Large Small 0.264 0.011 0.695 0.015

Symmetric Small Large 0.047 0.003 0.899 0.010

Skewed Small Large 0.159 0.007 0.732 0.014

Symmetric Large Large 0.089 0.005 0.879 0.010

Skewed Large Large 0.313 0.012 0.542 0.016

Table 7.15: Performance measures for estimating the population absolute
difference in means δ∗∗3∗ and population standardized difference in means
λ∗∗3∗ between change from baseline values of the intervention and control
group. Distribution = distribution of individual baseline residual eug1p and
individual postintervention residual eug2p; effect = treatment effect du∗2∗;
sample = sample size nug∗∗; bias = mean bias of the absolute difference
in means biasδ̂∗∗3∗ and mean bias of the standardized difference in means
biasλ̂∗∗3∗

; coverage = coverage of absolute difference in means coverδ̂∗∗3∗ and
coverage of the standardized difference in means coverλ̂∗∗3∗

; MCSE = monte
carlo standard error.
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Chapter 8

R Package

Several software packages have been developed to help researchers perform

meta-analyses. These include packages for R. R is a programming lan-

guage for statistical computing and creating figures and has gained popu-

larity among researchers in recent years thanks to its open source software

environment. The free software environment allows users to create pack-

ages that extend the features of the R language [25]. R software packages

have been developed for pooling effect measures from individual studies in

a meta-analysis [26, 27]. To the best of my knowledge, there is no R soft-

ware package that allows the calculation of consistent effect measures from

continuous outcome data presented in different ways.

The uniform package was created for this purpose and can be installed

in R by executing the following R code:

l i b r a r y ( dev too l s )

dev too l s : : i n s t a l l g i t h u b ( ‘ ‘ bkendzio /uniform ’ ’ )

l i b r a r y ( uniform )

The install github function of the devtools package [28] allows the instal-

lation of packages hosted on GitHub [29]. After installing the package, the

vignette of the package can be accessed via:
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v i gne t t e ( ‘ ‘ uni formVignette ’ ’ ,

package = ‘ ‘ uniform ’ ’ )

This vignette, which includes a step-by-step guide for using the functions

of the package, is shown on the next pages.
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uniform: Unification of a Differently or Incompletely Reported
Continuous Outcome across Studies Included in a Meta-Analysis

The goals of uniform are the unification of a differently or incompletely reported continuous outcome across
studies included in a meta-analysis and calculation of consistent effect measures so that they can be pooled.
Currently, uniform comprises the following functions:

• co.co uniforms a differently or incompletely reported continuous outcome across studies included in a
meta-analysis.

• em.co_interventionalControlled calculates effect measures for continuous continuous outcome data
given by interventional controlled studies and uniformed by the co.co function.

In the following, there is a step-by-step guide for using the functions of the package.

Installation

The package uniform can be installed from GitHub and loaded via:

library(devtools)
devtools::install_github("bkendzio/uniform")
library(uniform)

Challenge and Example Data Set

The synthesis of evidence in meta-analyses is done by pooling effect measures from individual studies. Both
an effect measure and a measure of dispersion are needed per study for pooling effects across studies. Effect
measures are statistical constructs that measure the strength of the relationship between two variables in
a population, e.g. the strength of the link between exposure and outcome (Tripepi et al. 2007). Most
commonly, an outcome is campared between an exposed and a nonexposed group for calculating an effect
measure (Higgins, Li, and Deeks 2019). Continuous outcomes for groups of observations can be reported
differently, with different measures of central tendency (e.g., mean or median per group) and dispersion (e.g.,
standard deviation vs. interquartile range). In addition, some studies do not report a measure of dispersion
at all. These differences in reporting considerably complicate or prevent the calculation of consistent effect
measures for pooling the results of individual studies in a meta-analysis and may lead to trade-offs that
result in the exclusion of relevant studies.

The artificially created example data set (dataCoRaw), which is included in the package, illustrates such a
situation. The data set contains information of 13 interventional controlled studies that shall be included
in a meta-analysis. The studies measured a continuous outcome at baseline (t=1) and postintervention
(t=2) and calculated the change from baseline (t=3) for an intervention (group=1) and a control group
(group=2), respectively. As it is common in reality, the studies reported the continuous outcome differently,
with different measures of central tendency (e.g., mean or median) and dispersion (e.g., standard deviation
or interquartile range). In addition, some measurements were not reported. The reported measures of central
tendency and dispersion of the outcome of the first 6 patient groups can be viewed after running the following
code:
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data(dataCoRaw)
head(dataCoRaw)
#> study group t n mean m s se ll95 ul95
#> 1 1 1 1 26 98.25075 NA NA NA 91.94109 104.5604
#> 2 2 1 1 26 NA 87.78617 27.255960 5.345334 NA 106.1816
#> 3 3 1 1 12 NA 89.57264 NA 2.752580 82.99739 93.7873
#> 4 4 1 1 25 97.29694 NA 24.909225 4.981845 NA 107.0612
#> 5 5 1 1 21 101.81822 98.64052 24.043639 5.246752 91.53477 NA
#> 6 6 1 1 11 105.54045 NA 8.127579 2.450557 100.73745 NA
#> ll90 ul90 ll99 ul99 a b lq uq
#> 1 92.95551 NA 89.95844 106.5431 66.87363 121.4857 86.01877 113.37884
#> 2 86.91268 104.49727 NA 109.4736 58.26235 146.5305 NA 113.26442
#> 3 83.86476 92.91994 81.30217 NA 71.93112 105.7785 NA 90.72357
#> 4 89.10253 105.49134 84.46456 110.1293 51.52891 NA 86.33158 108.94238
#> 5 93.18808 110.44836 88.30348 115.3330 72.10060 156.3750 86.56925 NA
#> 6 NA 109.57126 NA 111.8527 NA 119.7508 99.30241 109.79633

• study: An integer vector with study labels.
• group: An integer vector with group labels.
• t: An integer vector with time points of outcome measurement.
• n: An integer vector with numbers of observations in groups at time points.
• mean: A vector of means of the outcome in groups at time points.
• m: A vector of medians of the outcome in groups at time points.
• s: A vector of standard deviations of the outcome in groups at time points.
• se: A vector of standard errors of the mean of the outcome in groups at time points.
• ll95: A vector of the lower limits of the 95 percent confidence interval of the mean outcome in groups

at time points.
• ul95: A vector of the upper limits of the 95 percent confidence interval of the mean outcome in groups

at time points.
• ll95: A vector of the lower limits of the 90 percent confidence interval of the mean outcome in groups

at time points.
• ul95: A vector of the upper limits of the 90 percent confidence interval of the mean outcome in groups

at time points.
• ll99: A vector of the lower limits of the 99 percent confidence interval of the mean outcome in groups

at time points.
• ul95: A vector of the upper limits of the 99 percent confidence interval of the mean outcome in groups

at time points.
• a: A vector of minima of the outcome in groups at time points.
• b: A vector of maxima of the outcome in groups at time points.
• lq: A vector of lower quartils of the outcome in groups at time points.
• uq: A vector of upper quartils of the outcome in groups at time points.

Unification

co.co

The co.co function uniforms a differently or incompletely reported continuous outcome across studies in-
cluded in a meta-analysis by converting the provided results for each group to mean and standard deviation
where possible. For this purpose, conversion and imputation methods previously introduced in the literature
are used:

• Obtaining Mean and Standard Deviation from Mean and Standard Error by Algebraic Conversion
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• Obtaining Mean and Standard Deviation from Mean and Confidence Interval by Algebraic Conversion
• Obtaining Mean and Standard Deviation from Mean and Range

– The “Range”-Method (Higgins, Li, and Deeks 2019)
– Method by Walter and Yao (Walter and Yao 2007)

• Obtaining Mean and Standard Deviation form Median and Range

– Method by Hozo et al. (Hozo, Djulbegovic, and Hozo 2005)
– Method by Wan et al. (Wan et al. 2014)

• Obtaining Mean and Standard Deviation from Median and Interquartile Range

– Method by Wan et al. (Wan et al. 2014)
– Cochrane Method (Higgins, Li, and Deeks 2019)

• Obtaining Mean and Standard Deviation form Median, Range, and Interquartile Range

– Method by Bland (Bland 2015)
– Method by Wan et al. (Wan et al. 2014)

• Obtaining Mean and Standard Deviation from Mean and Missing Standard Deviation by Imputation

– Method by Furukawa et al. (Furukawa et al. 2006)
– Method by Marinho et al. (Marinho et al. 2003)

If the data is structured similar to the example data set with the same names for the variables, the function
can be used by defining the data set in a single argument:

dataCoUniform <- co.co(data=dataCoRaw)

If the data set is structured differently with different names for the variables, the function can be used by
defining vectors of study labels, group labels, time points of outcome measurement, numbers of observations,
and measures of central tendency and dispersion separately:

dataCoUniform <- co.co(study=dataCoRaw$study,group=dataCoRaw$group,t=dataCoRaw$t,
n=dataCoRaw$n,mean=dataCoRaw$mean,m=dataCoRaw$m,
s=dataCoRaw$s,se=dataCoRaw$se,ll95=dataCoRaw$ll95,
ul95=dataCoRaw$ul95,ll90=dataCoRaw$ll90,ul90=dataCoRaw$ul90,
ll99=dataCoRaw$ll99,ul99=dataCoRaw$ul99,a=dataCoRaw$a,
b=dataCoRaw$b,lq=dataCoRaw$lq,uq=dataCoRaw$uq)

The following optional arguments can be used to choose between different methods of conversion and impu-
tation:

• meanSd.meanAB: An optional character string indicating which method is used for obtaining mean
and standard deviation from mean and range. Either “range” for the range method (default), or
“walterYao” for the method by Walter and Yao.

• meanSd.mIqrRange: An optional character string indicating which method is used for obtaining mean
and standard deviation from median, interquartile range, and range. Either “Bland” for the method
by bland, or “wanEtal” for the method by Wan et al. (default).

• meanSd.mIqr: An optional character string indicating which method is used for obtaining mean and
standard deviation from median and interquartile range. Either “wanEtal” for the method by Wan et
al. (default), or “cochrane” for Cochrane method.

• meanSd.mRange: An optional character string indicating which method is used for obtaining mean
and standard deviation from median and range. Either “hozoEtal” for the method by Hozo et al., or
“wanEtal” for the method by Wan et al. (default).
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• meanSd.mean: An optional character string indicating which method is used for obtaining mean and
standard deviation from mean and missing standard deviation by imputation. Either “furukawaEtal”
for the method by Furukawa et al. (default), or “marinhoEtal” for the method by Marinho et al..

The function returns a data frame object that contains study labels, group labels, time points of outcome
measurement, numbers of observations in groups at time points, means of outcome in groups at time points,
standard deviations of outcome in groups at time points:

head(dataCoUniform)
#> study group t n mean s
#> 1 1 1 1 26 98.25075 16.414850
#> 2 2 1 1 26 NA 27.255960
#> 3 3 1 1 12 89.21373 21.325936
#> 4 4 1 1 25 97.29694 24.909225
#> 5 5 1 1 21 101.81822 24.043639
#> 6 6 1 1 11 105.54045 8.127579

Effect Measure Calculation

Depending on the study design of the studies, different effect measures can be calculated and pooled in
a meta-analysis. Version 0.0.1 of the uniform package allows to calculate effect measures for continuous
outcome data given by interventional controlled studies.

em.co_interventionalControlled

The data frame returned by the co.co function can be included in the em.co_interventionalControlled
function. The function calculates the absolute difference in means between the intervention and control
group or the standardized difference in means Hedges’ g, either adjusted for small sample bias or unadjusted
(Hedges and Olkin 1985). Before, the method by Follmann et al. for obtaining the mean change from
baseline with standard deviation from mean baseline with standard deviation and mean postintervention
with standard deviation is used to calculate the mean change from baseline with standard deviation in case
of missed reporting (Follmann et al. 1992).

In addition to the data frame object returned by the co.co function, the following information must be
passed into the em.co_interventionalControlled function:

• groupIntervention: A character string that specifies how the elements of the group vector that define
the intervention groups are labeled (e.g., “1” for intervention groups).

• groupControl: A character string that specifies how the elements of the group vector that define the
control groups are labeled (e.g., “2” for control groups).

• tBaseline: A character string that specifies how the elements of the time point vector that define
baseline measurements are labeled (e.g., “1” for baseline measurements).

• tPost: A character string that specifies how the elements of the time point vector that define postin-
tervention measurements are labeled (e.g., “2” for postintervention measurements).

• tChange: A character string that specifies how the elements of the time point vector that define change
from baseline measurements are labeled (e.g., “3” for change from baseline measurements).

The function can then be executed by:
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dataEm<-em.co_interventionalControlled(data=dataCoUniform,
groupIntervention="1",groupControl="2",tBaseline="1",
tPost="2",tChange="3")

The following optional arguments can be used to change the type of effect measure and specify the calculation:

• em: An optional character string indicating which summary measure is calculated. Either “md” for
mean difference (default), or “smd” for Hedges g’ as standardized mean difference.

• smdMethod: An optional character string indicating if Hedges g’ is adjusted to account for a positive
bias for small sample sizes. Either “hedgesAdjusted” for Hedges adjusted g’, or “hedgesUnadjusted”
for Hedges unadjusted g’.

• combineChangePost: An optional logical indicating whether postintervention measurements should
be used instead of change from baseline measurements for studies for which change from baseline
measurements cannot be obtained and when the absolute mean difference is used as effect measure.
Default is FALSE.

With usage of optional arguments, the function may be executed by:

dataEm<-em.co_interventionalControlled(data=dataCoUniform,groupIntervention="1",
groupControl="2",tBaseline="1",tPost="2",tChange="3",
em="smd",smdMethod="hedgesAdjusted",
combineChangePost=TRUE)

The function returns a data frame object that contains study labels, numbers of observations in the inter-
vention groups, numbers of observations in the control groups, effect measures, and standard errors for the
studies included in the meta-analysis.

head(dataEm)
#> study nIntervention nControl smd se
#> 1 1 26 26 0.39786965 0.2800807
#> 2 2 26 26 -0.07910397 0.2774585
#> 3 3 12 12 0.53719940 0.4155464
#> 4 4 25 25 0.27115222 0.2841395
#> 5 5 21 21 0.79729749 0.3206334
#> 6 6 11 11 0.89229024 0.4471166

Afterwards, the effect measures can easily be pooled by using functions of other packages, e.g. the metagen
function of the meta package (Balduzzi, Rücker, and Schwarzer 2019).
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Chapter 9

Discussion

9.1 Summary

This master’s thesis was conducted with the goal of comparing different meth-

ods for the conversion and imputation of differently or incompletely reported

continuous outcomes, setting up a guidance on which methods should be

used, and creating an R package for the conversion and imputation of con-

tinuous outcomes and calculation of uniform effect measures.

Based on the results of simulation studies that compared conversion and

imputation methods in terms of precision when applied for computing uni-

form effect measures for interventional controlled studies that are pooled in

a meta-analysis, the conversion and imputation methods written in bold in

the following should be used:

• Obtaining Mean and Standard Deviation from Mean and Standard

Error by Algebraic Conversion

• Obtaining Mean and Standard Deviation from Mean and Confidence

Interval by Algebraic Conversion

• Obtaining Mean and Standard Deviation from Mean and Range
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– The “Range”-Method [5]

– Method by Walter and Yao [7]

• Obtaining Mean and Standard Deviation form Median and Range

– Method by Hozo et al. [10]

– Method by Wan et al. [11]

• Obtaining Mean and Standard Deviation from Median and Interquar-

tile Range

– Method by Wan et al. [11]

– Cochrane Method [5]

• Obtaining Mean and Standard Deviation form Median, Range, and

Interquartile Range

– Method by Bland [12]

– Method by Wan et al. [11]

• Obtaining Mean and Standard Deviation from Mean and Missing Stan-

dard Deviation by Imputation

– Method by Furukawa et al. [13]

– Method by Marinho et al. [?, 14]

• Obtaining the Standardized Mean Difference and Standard Error from

a 2 x 2 Contingency Table for a Dichotomized Continuous Outcome

– Method by Cox [16]

– Method by Glas et al. [17]

– Method by Hedges and Olkin [19]
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• Obtaining Mean Change from Baseline with Standard Deviation from

Mean Baseline, Mean Postintervention, Mean Baseline Standard Devi-

ation, and Mean Postintervention Standard Deviation with a Method

by Follmann et al.

The R package uniform was created. It can be downloaded from GitHub

and allows the unification of a differently or incompletely reported continuous

outcome across studies included in a meta-analysis and the calculation of

consistent effect measures for interventional controlled studies.

The co.co function of the uniform package uniforms a differently of incom-

pletely reported continuous outcome across studies. The above mentioned

conversion and imputation methods were integrated in the function. The

methods in bold are the default methods. There are two exceptions. Methods

for obtaining the standardized mean difference and standard error from a 2x2

contingency table for a dichotomized continuous outcome and the method by

Follmann et al. for obtaining the mean change from baseline with standard

deviation from mean baseline with standard deviation and mean postinter-

vention with standard deviation were not integrated since these methods

conceptually differ from the other methods, which is explained in Chapter 3.

In short, these methods do not result in the mean and standard deviation

for a single group of observations of a continuous outcome.

The em.co interventionalControlled function calculates effect measures

for continuous outcome data given by interventional controlled studies and

uniformed by the co.co function. The method by Follmann et al. for ob-

taining the mean change from baseline with standard deviation from mean

baseline with standard deviation and mean postintervention with standard

deviation is integrated in this function.
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9.2 Previous Research

Some of the works that introduced the included conversion and imputation

methods also performed simulation studies. In most of these studies, mea-

sures of central tendency and/or dispersion (e.g., mean and/or standard devi-

ation) of an outcome in a single group of observations were used as estimand,

while effect measures (absolute difference in means and standardized differ-

ence in means) comparing an outcome between two groups of observations

were used as estimands in the simulation studies of this thesis.

The previous simulation studies by Hozo et al. [10], Wan et al. [11], and

Bland [12] are presented in more detail in Chapter 3. Shortly summarized,

Wan et al. compared their newly developed methods for obtaining mean and

standard deviation from median and range, for obtaining mean and standard

deviation from median and interquartile range, and for obtaining mean and

standard deviation from median, range, and interquartile range to existing

methods and found an improvement in precision. Bland aimed at improv-

ing the method by Hozo et al. for obtaining mean and standard deviation

from median and range by incoroprating the interquartile range and found

an improvement in precision in simulation studies. The findings of our simu-

lation studies do not contradict these findings. Walter and Yao [7] suggested

a method for obtaining mean and standard deviation from mean and range

that is more sophisticated than the “range”-method by the incorporation of

a conversion factor that decreases with sample size. Walter and Yao did not

back this method up by simulation studies, and interestingly, the simulation

studies of this thesis do not suggest higher precision.

9.3 Limitations

First, the simulation studies of this thesis aimed at comparing conversion and

imputation methods for differently or incompletely reported continuous out-

comes in terms of precision when applied for computing uniform effect mea-
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sures for interventional controlled studies that are pooled in a meta-analysis.

Study designs different from the interventional controlled setting could lead

to other results. Second, the simulation studies of this thesis included sev-

eral data generation mechanisms with different assumptions. Other scenarios

are possible and may lead to different results. Third, data from 1000 meta-

analyses per data generation scenario were simulated. Each meta-analysis

included between 10 and 30 studies that were also simulated. To keep the

time expense reasonable, the number of simulated meta-analyses per data

generation scenario had to be kept at the relatively low number of 1000,

which affected the accuracy of the results. Fourth, the conversion and impu-

tation methods included in this thesis were found in a literature search that

was not systematic with a previously defined search string and inclusion of

several data bases. Consequently, the likelihood that relevant conversion and

imputation methods may have been missed is increased.

9.4 Outlook

The current version 0.0.1 of the uniform R package allows to uniform a dif-

ferently or incompletely reported continuous outcome across studies included

in a meta-analysis by using the co.co function. The function can be broadly

applied on different study designs. The em.co interventionalControlled func-

tion allows to calculate consistent effect measures for continuous outcome

data given by interventional controlled studies and uniformed by the co.co

function. Calculation of effect measures for other study designs shall be in-

cluded in a subsequent version of the uniform package. Afterwards, the pack-

age shall be uploaded to The Comprehensive R Archive Network (CRAN).

The usage of the package shall be published in a journal article.
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9.5 Conclusion

In this master thesis, conversion and imputation methods for a differently or

incompletely reported continuous outcome were compared in terms of bias

and included in the newly created uniform R package. Bias was compared

using simulation studies with different data generation scenarios. Methods

resulting in the highest precision were set as default. Version 0.0.1 of the

uniform R package allows to uniform a differently or incompletely reported

continuous outcome across studies and to calculate effect measures for inter-

ventional controlled studies.
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[15] J. Sánchez-Meca, F. Maŕın-Mart́ınez, and S. Chacón-Moscoso, “Effect-

size indices for dichotomized outcomes in meta-analysis.” Psychological

methods, vol. 8, no. 4, p. 448, 2003.

80



[16] D. R. Cox and E. J. Snell, Analysis of binary data. Routledge, 2018.

[17] G. Glas, B. McGraw, and M. Smith, “Meta-analysis in social research.

beverly hills,” 1981.

[18] R. L. Thorndike, “Personnel selection: test and measurement technique.

new york: Johh wiley and sons,” 1949.

[19] L. Hedges and I. Olkin, “Statistical methods for meta-analysis,” 1985.

[20] D. Follmann, P. Elliott, I. Suh, and J. Cutler, “Variance imputation for

overviews of clinical trials with continuous response,” Journal of clinical

epidemiology, vol. 45, no. 7, pp. 769–773, 1992.

[21] M. Borenstein, L. V. Hedges, J. P. Higgins, and H. R. Rothstein, “Effect

sizes based on means,” Introduction to meta-analysis, pp. 21–32, 2009.

[22] ——, “A basic introduction to fixed-effect and random-effects models for

meta-analysis,” Research synthesis methods, vol. 1, no. 2, pp. 97–111,

2010.

[23] R. DerSimonian and N. Laird, “Meta-analysis in clinical trials,” Con-

trolled clinical trials, vol. 7, no. 3, pp. 177–188, 1986.

[24] T. P. Morris, I. R. White, and M. J. Crowther, “Using simulation studies

to evaluate statistical methods,” Statistics in medicine, vol. 38, no. 11,

pp. 2074–2102, 2019.

[25] F. M. Giorgi, C. Ceraolo, and D. Mercatelli, “The r language: An engine

for bioinformatics and data science,” Life, vol. 12, no. 5, p. 648, 2022.
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Appendix

Appendix 1: Possibilities for Reporting Out-

come Data

• Dichotomous data

– Number of participants with each outcome in each participant

group

– Proportion of participants with each outcome in each participant

group

• Continuous data

– Preinterventional measurement, postinterventional measurement,

and/or change from baseline in each participant group

∗ Mean with standard deviation

∗ Mean with standard error

∗ Mean with confidence interval

∗ Mean with range

∗ Mean with missing dispersion measure

∗ Median with range

∗ Median with interquartile range

∗ Median with range and interquartile range
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∗ Median with missing dispersion measure

∗ Dichotomized with the number of participants inside an out-

come range

∗ Dichotomized with the proportion of participants inside an

outcome range

• Ordinal data

– Number of participants in each category of the ordinal scale in

each group

– Proportion of participants with each category of the ordinal scale

in each group

• Counts and rates

– Number of events in each group and person-time at risk in each

group

– Number of events in each group and time at risk in each group

• Time-to-event data

– Number of patients who are followed up in each period and each

group and number of events in each period and each group

Appendix 2: List of Effect Measures with Cor-

responding Outcome Data Needed

• Ratio measures

– Odds ratio: dichotomous data

– Risk ratio: dichotomous data

– Proportional odds ratio: ordinal data
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– Rate ratio: counts and rates

– Hazard ratio: time-to-event data

– Ratio of means: continuous data

– Number needed to treat: dichotomous data

• Difference measures

– Absolute difference: continuous data

– Standardized difference

∗ Hedges g’: continuous data

∗ Glass’ delta: continuous data

∗ Standardized difference in means in terms of the minimal im-

portant difference: continuous data

∗ Mean prevented fraction: continuous data

∗ Difference in the mean percentage change from baseline: con-

tinuous data

– Risk difference: dichotomous data

– Rate difference: dichotomous data
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