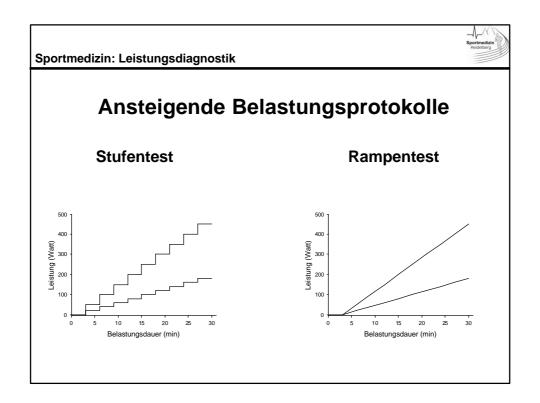
Sportmedizin

Leistungsdiagnostik: Spiroergometrie

Dr. med. Birgit Friedmann, Abteilung Innere Medizin VII: Sportmedizin


Sportmedizin: Leistungsdiagnostik

Spiroergometrie zur Objektivierung der kardiopulmonalen Leistungsfähigkeit

- Leistungssportler
- Freizeitsportler
- Patienten

Ableitung von Trainingshinweisen

Sportmedizin: Spiroergometrie

Gemessene Parameter:

- Ergometrie und zusätzlich:
- AMV (VE)
- VO₂
- VCO₂

Berechnete Parameter:

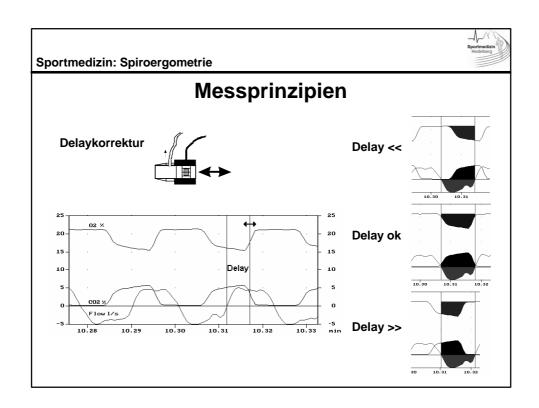
- VCO₂/VO₂ (RQ = Respiratorischer Quotient)
- VE/VO_2 (EQO₂, ventilatorisches Äquivalent für O₂)
- VE/VCO₂ (EQCO₂, ventilatorisches Äquivalent für CO₂)
- VO₂/Herzfrequenz (O₂ Puls, Sauerstoffpuls)

Messung mit Hilfe einer Atemmaske oder eines Mundstücks

Sportmedizin: Spiroergometrie

Vorbereitungen für eine Spiroergometrie

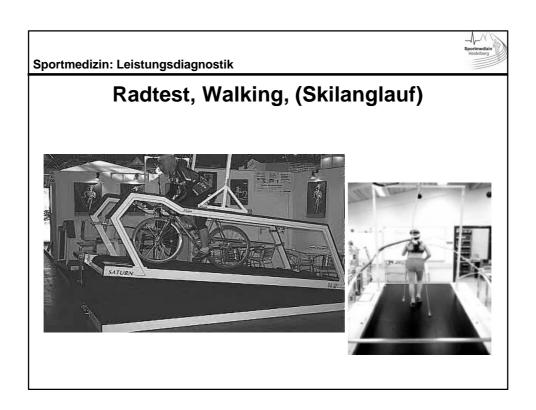
- Umgebungsbedingungen
- Betriebstemperatur des Geräts
- Kalibration
 - Kalibration Gasanalysatoren
 - Kalibration Flow Sensor
 - Kalibrationsprotokolle
- Vorbereitung Ergometer
- Vorbereitung Patient / Sportler

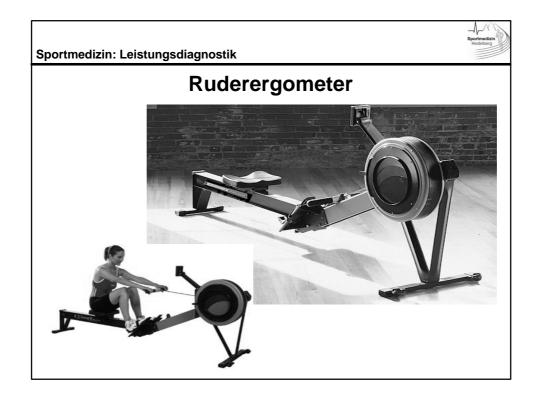


Anpassungsreaktionen des Körpers an Belastung

- Stoffwechsel
- Herz-Kreislauf-System
- Atmung

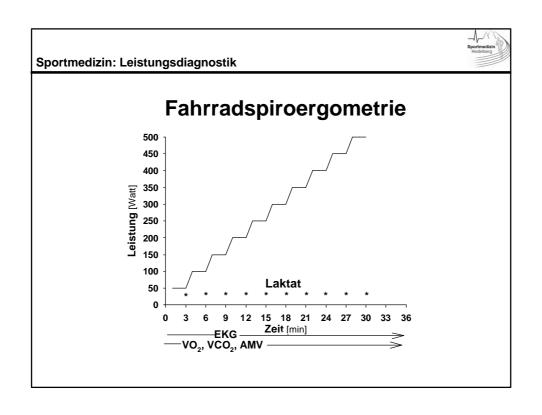
Sportmedizin: Leistungsdiagnostik

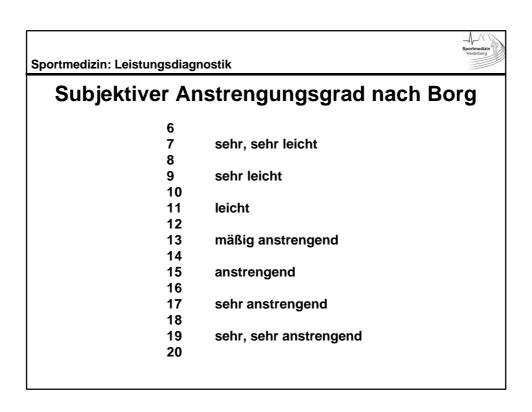



Leistungsdiagnostik im Leistungssport

- Untersuchungen im Ergometrielabor:
 - Möglichst sportartspezifische Belastung
 - Stufenweise ansteigende Spiroergometrien zur Ermittlung der maximalen Leistungsfähigkeit und der Ausdauergrenze:
 - Kontinuierliches EKG-Monitoring
 - Kontinuierliche Messung von Atemminutenvolumen, VO₂, VCO₂
 - Messungen der Laktatkonzentration im Kapillarblut
- <u>Untersuchungen unter Trainings- und Wettkampfbedingungen:</u>
 - Feldstufentests auf der Laufbahn, im Wasser, auf dem Wasser,...
 - Bestimmung der Herzfrequenz
 - Messung der Laktatkonzentration im Kapillarblut
 - (Kontinuierliche Messung von Atemminutenvolumen, VO2, VCO2)

Kanuergometer




Sportmedizin: Leistungsdiagnostik

Leistungsdiagnostik für Patienten

- Untersuchungen im Ergometrielabor:
 - Wahl der Belastungsart (Fahrrad- oder Laufbandergometer) mit dem Ziel, eine kardiopulmonale Ausbelastung zu erreichen
 - Stufenweise ansteigende Spiroergometrien zur Ermittlung der maximalen Leistungsfähigkeit (und der Ausdauergrenze):
 - Kontinuierliches EKG-Monitoring
 - Kontinuierliche Messung von Atemminutenvolumen, VO₂, VCO₂
 - (Messungen der Laktatkonzentration im Kapillarblut)

Ausbelastungskriterien

- 90 % der maximalen Herzfrequenz (220 Lebensalter)
- Plateau der VO₂-Kurve
- RQ ? 1.1
- Laktat ? 8 mmol/l
- Borg-Skala? 16

Sportmedizin: Leistungsdiagnostik

Abbruchkriterien

- · Angina pectoris
- Ischämiezeichen im EKG
- Arrhythmien (Komplexe ES, AV-Block II oder III)
- Blutdruckabfall systolisch > 10 mmHg gegenüber Ausgangswert
- Zeichen einer Durchblutungsstörung: Cyanose, Blässe
- · Respiratorische Insuffizienz
- Koordinationsstörung, Verwirrung, Schwindel
- Hypertensive Blutdruckwerte (> 250 mmHg syst. und/oder 115 mmHg diast.)

Absolute Kontraindikationen

- Floride systemische oder kardiale Infektion
- Instabile Angina pectoris oder Myokardinfarkt
- Schwere Aortenstenose
- Schwere Herzinsuffizienz
- Akute respiratorische Insuffizienz
- Akute Thrombose der unteren Extremitäten mit oder ohne Lungenembolie

Sportmedizin: Leistungsdiagnostik

Maximale Sauerstoffaufnahme (VO₂max)

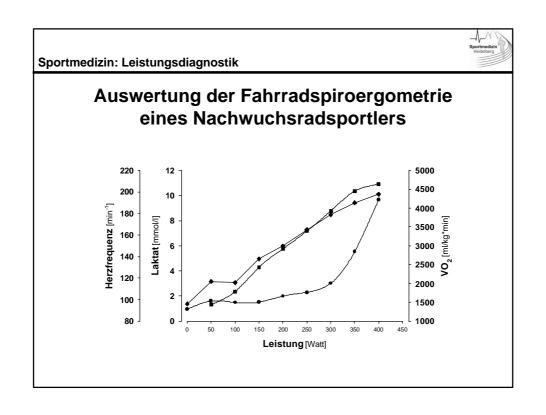
- Männer: 18 22 Jahre:
 44 50 ml/kgKG
- Ab 30 Jahre:
 - 1 %/Jahr
- Läufer (Spitzensportler):
 ca. 80 85 ml/kgKG
- Skilangläufer:90 95 mk/kgKG

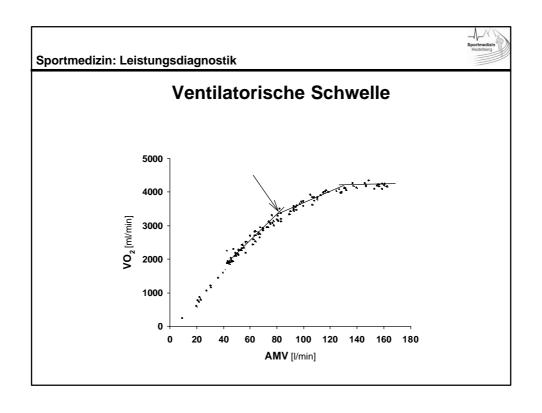
- Frauen: 18 22 Jahre:
 38 42 ml/kgKG
- Ab 30 Jahre:
 - 1 %/Jahr
- Läuferinnen: ca. 70 ml/kgKG
- Skilangläuferinnen bis 77 ml/kgKG
- Schwere Herzinsuffizienz: < 14 ml/kgKG

Ergebnis einer Fahrradspiroergometrie eines Nachwuchsradsportlers

	Ruhe		Belastung						Erholung			
p [Watt]		50	100	150	200	250	300	350	400	50	50	50
Dauer [min]		3:00	3:00	3:00	3:00	3:00	3:00	3:00	3:00	1:00	3:00	5:00
HF [1/min]	96	117	116	138	150	165	179	190	198	139	136	132
VO ₂ [ml/min]		1440	1791	2432	2918	3396	3931	4454	4640			
VO₂/kg [ml/kg]		20.4	25.5	34.5	41.3	48.2	55.8	63.2	65.8			
Laktat [mmol/l]	0.95	1.61	1.49	1.52	1.99	2.29	3.02	5.52	9.66	11.27	11.02	9.99

pmax: 400 Watt =4.67 Watt/kg, VO $_2$ max: 4.64 l/min = 65.8 ml/kgKG?min, max. AMV: 159 l/min, max. RQ: 1.12, Anstrengungsgrad nach Borg: 18

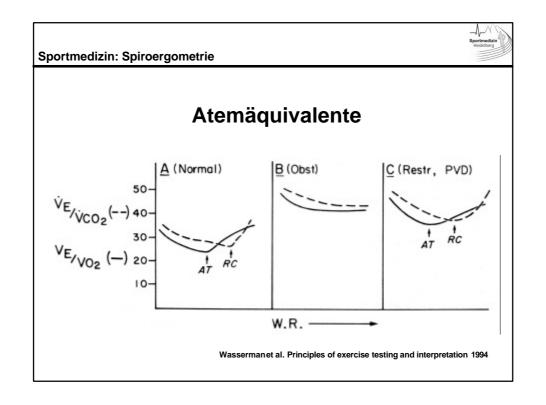

Sportmedizin: Leistungsdiagnostik

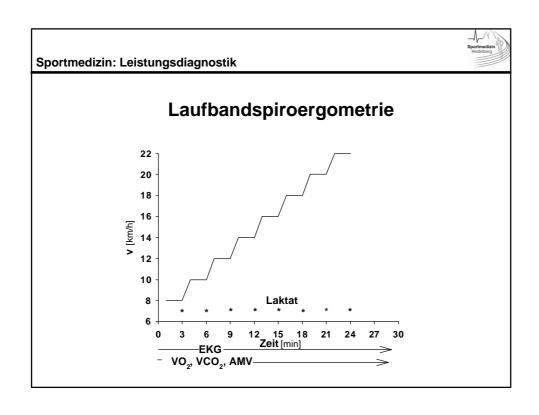


Fahrradspiroergometrie: Werte des Probanden/der Probandin

	Ruhe				Bela	stung				E	rholun	g
p [Watt]		50	100	150	200	250	300	350	400	50	50	50
Dauer [min]										1:00	3:00	5:00
HF [1/min]												
VO ₂ [ml/min]												
VO₂/kg [ml/kg]												
Laktat [mmol/l]												

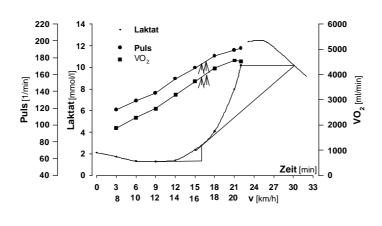
pmax: ... Watt =.....Watt/kg, VO $_2$ max:I/min =ml/kgKG $_2$ min, max. AMV:I/min, max. RQ:, Anstrengungsgrad nach Borg: ... VE/VO $_2$ max:.....VE/VCO $_2$ max:......


Trainingshinweise für einen Nachwuchsradsportler


	Intensität						
Trainingsform	%Schwelle	Watt	Puls (1/min)				
Entwicklungs- bereich	100	300	179				
Grundlagenaus- dauer II	90	270	170				
Grundlagenaus- dauer I	70 - 80	210 – 240	154 – 162				
Regeneration	< 60	< 180	< 145				

Trainingshinweise für den Probanden/die Probandin

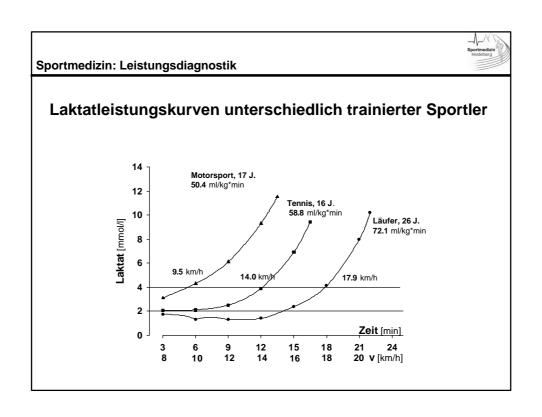
	Intensität						
Trainingsform	%Schwelle	Watt	Puls (1/min)				
Entwicklungs- bereich	100						
Grundlagenaus- dauer II	90						
Grundlagenaus- dauer I	70 - 80						
Regeneration	< 60						
'							

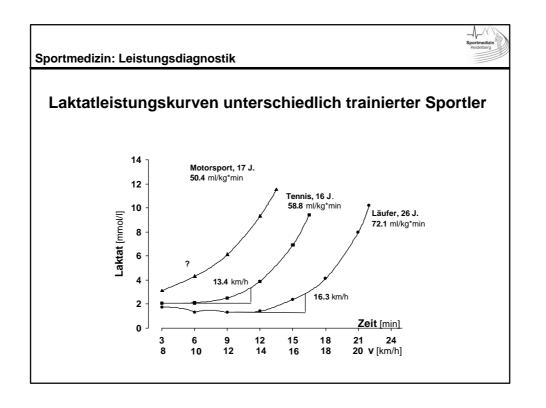

Ergebnis einer Laufbandspiroergometrie eines Langstreckenläufers der deutschen Spitzenklasse

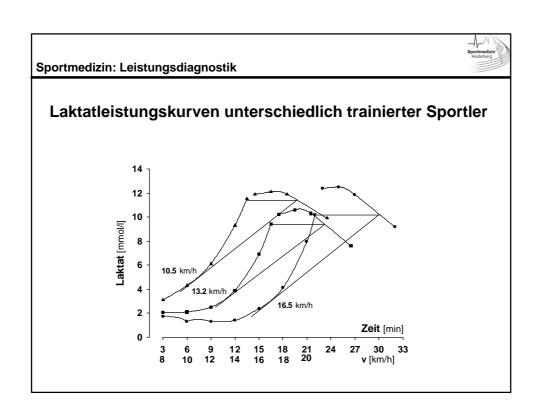
	Ruhe				Belas	stung				E	rholun	g
V [Km/h]		8	10	12	14	16	18	20	22	5	5	5
Dauer [min]		3:00	3:00	3:00	3:00	3:00	3:00	3:00	1:00	1:00	3:00	5:00
HF [1/min]	76	118	129	138	155	168	182	189	191	167	126	115
VO ₂ [ml/min]		1877	2290	2649	3198	3728	4250	4560	4534			
VO ₂ /kg [ml/kg]		29.8	36.3	42.0	50.8	59.2	67.5	72.3	72.0			
Laktat [mmol/l]	2.10	1.73	1.18	1.30	1.32	2.37	4.09	7.96	10.19	12.38	12.50	11.8

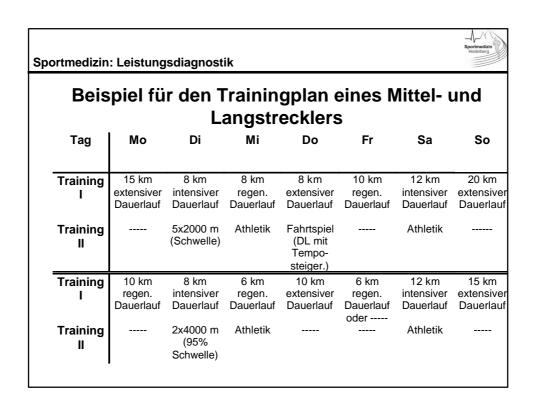
vmax: 20.67 km/h = 5.74 m/s, VO_2 max: 4.5 l/min = 72.3 ml/kgKG, max. AMV: 149 l/min, max. RQ: 1.11

Laktatleistungskurve, Herzfrequenz und ${\rm VO_2}$ bei einem Mittelund Langstreckenläufer der deutschen Spitzenklasse

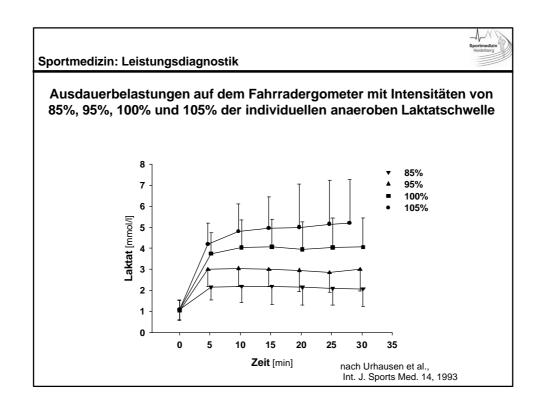


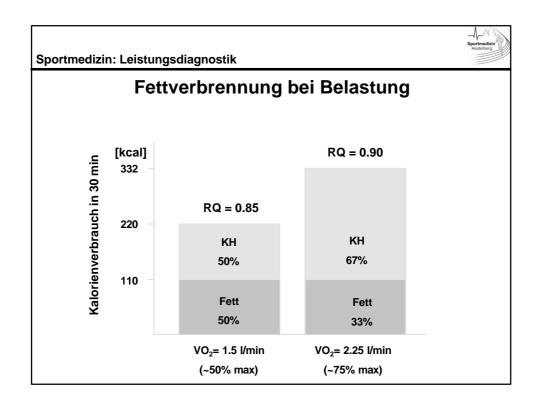

Sportmedizin: Leistungsdiagnostik

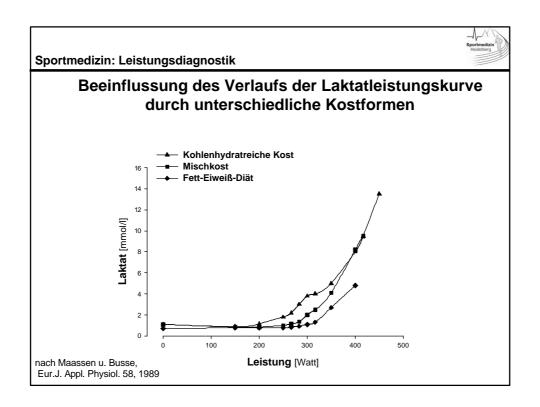



Trainingshinweise für einen Mittel- und Langstreckenläufer der deutschen Spitzenklasse

	Intensität						
Trainingsform	% Schwelle	Km/h	Min/min	Puls (1/min)			
Tempo-DL	100	16.4	3:40	172			
Intensiver DL	95	15.6	3:50	165			
Extensiver DL	85 – 90	13.9 – 14.8	4:05 – 4:20	154 – 160			
Regeneration	< 80	<13.1	> 4:35	< 146			







Intensitä Scwellenb	t (% der elastung)		ngsdauer nin)	Bezeichnung		
Laufen	Rad	Laufen	Rad	Laufen	Rad	
100	100	20-30		Tempo-DL E	ntwicklung	
95	90	30-45	+ 50- 100 %	Intensiver DL	GA2	
85-90	70-80	45-60		Extensiver DL	GA1	
< 80	< 60	30		Regene	ration	

Sportmedizin: Leistungsdiagnostik - Spiroergometrie

Zusammenfassung

- Belastungsuntersuchung unter standardisierten Bedingungen
- Messung der Ventilationsparameter (und Laktatbestimmung)
- Objektivierung der kardiopulmonalen Leistungsfähigkeit
- Ableitung konkreter Trainingshinweise
- DD Dyspnoe