24th Annual Meeting of the ESMAC & Pre-Congress

10–12 September 2015
Heidelberg, Germany

Pre-Congress | 7–9 September 2015

www.esmac2015.com
Announcement of the Conference ESMAC Seville 2016

We are delighted to invite you to the 25th Annual ESMAC Meeting 2016 from 26 September to October 1st in Seville, Spain.

The Pre Congress will take place from 26-28 September 2016.

The Main Congress will take place from 29 September to October 1st.

A great opportunity for researchers and clinicians to meet in one of the most monumental and beautiful cities in Europe.

The abstract submission starts January 11, 2016 and ends on April 17.

It will be a pleasure to meet you in Seville!

Kind regards

Ángela Tatay
President
Orthopaedic Surgery and Traumatology
Virgen del Rocio University Hospital
Dear colleagues, members and friends,

We cordially invite you to the 24th Annual ESMAC Meeting in Heidelberg – for the 2nd time in this romantic city after 1999. The senior scientists may refresh their memories; the young researchers may lose their heart in this beautiful place.

In any case, this multidisciplinary event will provide an enjoyable and enriching forum for researchers and clinicians to meet. It is intended for all those interested in the clinical and technical aspects of human movement analysis.

While the Main Congress will take place in the heart of the old town at the Neue Universität (Heidelberg University), the Pre-Congress with courses and seminars will be held in our Orthopaedic Centre. The doors will be open to see all aspects of orthopaedic treatment from surgery to orthotics and prosthetics, and of course motion analysis.

We are looking forward to fruitful collaboration and a successful congress and to welcoming you to Heidelberg in 2015.

Thomas Dreher

Sebastian Wolf

Dear attendees of the Annual ESMAC Meeting,

ESMAC – the European Society for Movement Analysis in Adults and Children – will hold its 24th Annual Meeting in Heidelberg from 10 to 12 September 2015. This will be the second time the scientists of the European Society for Movement Analysis in Adults and Children, which was founded in 1992, will meet in our city. I am very pleased with this. Choosing Heidelberg once again as a venue on the one hand clearly proves that a visit to our beautiful city is always worthwhile and, on the other hand, means that Heidelberg is recognised as a leading city of science – above all in the field of medical research and teaching – which always provides the right framework for scientific conferences.

ESMAC’s target and the purpose of the annual meeting of its members is to exchange new findings and ideas on movement analysis in adults and children. The exchange of theoretical knowledge in the premises of the New University will focus above all on aspects of biomechanics and on the clinical study of human movement processes. It will be complemented by courses and seminars at the Orthopaedic University Hospital where the orthopaedic treatment including operations and the manufacture of prostheses takes place. Heidelberg University Hospital is one of the most recognised centres for medical treatment, research and teaching in Europe.

Therefore the ESMAC Annual Meeting makes a significant contribution to strengthening Heidelberg’s importance as a business location and its leading position in the field of life sciences. In the name of all Heidelberg citizens I would like to very warmly welcome the participants of the 24th Annual Meeting of ESMAC and wish you all a pleasant and stimulating stay in our city that would love to be your host in the future as well.

Dr. Eckart Würzner
Mayor of Heidelberg
The ESMAC Gait Course provides a comprehensive overview of clinical gait analysis to those who are relatively new to the field. Participants will gain an understanding of normal walking gait, and learn how to describe this in a systematic way. Different elements of three-dimensional, instrumented gait analysis will be covered in-depth, including kinematics, kinetics and electromyography. Real, clinical cases will be used to demonstrate how to interpret this data, as well as relating the findings back to clinical examination and patient history. In addition, topics such as gait analysis equipment and trouble-shooting in the gait lab, will equip participants to gain valuable knowledge in assessing the validity of gait data. The course will be comprised of a mixture of lectures and interactive workshops. Participants will also have the opportunity to collect gait data in a clinical gait laboratory. The faculty includes engineers, physiotherapists and orthopaedic surgeons, all experienced in the field of clinical gait analysis.

Faculty
Kaat Desloovere
Thomas Dreher
Martin Gough
Bertram Müller
Neil Postans
Andrew Roberts
Julie Stebbins
Sebastian Wolf
Seminar 1 A clinician’s guide to musculoskeletal modelling and simulation

Chair: Richard Baker, Marjolein van der Krogt
Intended for: Clinicians (PTs, Physicians, Orthotists and Prosthesists)

Not sure what the difference is between inverse and forward dynamics? Confused by cost functions and boundary conditions? This seminar aims to describe state of the art in musculoskeletal modelling and simulation in a language that is comprehensible to clinicians with only a basic understanding of biomechanics.

At the end of the seminar you should be able to:

- Explain the basic terminology used in relation to musculoskeletal modelling and simulation
- Describe the major achievements in this field over the last twenty years
- Understand the limitations of these techniques
- Appreciate what developments are likely in the foreseeable future

Many biomechanists spend a lot of time dealing with the details and complexities of specific aspects of modelling and simulation and may also benefit from an opportunity to reflect on a simplified overview of what has been achieved and where the field is heading.

Timetable

Part 1: What are modelling and simulation?
Part 2: Muscle lengths and moment arms
Part 3: Muscle function
Part 4: What does the future offer?

Seminar 2 Interdisciplinary approach to crouch gait management in cerebral palsy

Chair: Thomas Dreher, Tom Novacheck
Intended for: PTs, Physicians, Bioengineers

Movement analysis has become increasingly important in the orthopedic management of patients with neuromuscular gait disorders. It is a valuable tool for functional assessment, it provides significant information for treatment decisions, and it serves as an objective means for outcome evaluation.

However, the interpretation of gait analysis data in the clinical setting is not always obvious and a multidisciplinary approach (physicians, PTs, bioengineers,...) is important for efficiently interpreting these rather manifold and detailed information for developing treatment recommendations and for optimizing clinical decision making as well as the therapeutic benefit of the chosen intervention. This approach has been established as a common means for gait data interpretation in many centers worldwide. However each discipline needs to understand the whole process in order to improve the outcome.

The purpose of this seminar is to develop such an interdisciplinary approach for treatment recommendations through the presentation and discussion of typical clinical cases. It aims to improve the understanding of the importance of the clinical movement analysis in the decision-making process. Furthermore the seminar includes a saw bone workshop offering to the interdisciplinary team to carry out one step of the surgical treatment.

Timetable

Part 1: An interdisciplinary workshop on development of treatment recommendations of crouch gait in cerebral palsy
Part 2: Distal femoral extension osteotomy – An interdisciplinary saw-bone workshop
Part 3: Discussion of outcomes
Wednesday, 9 September 2015, 09:00–13:00 h

Seminar 3 Biomechanics in prosthetics and orthotics – life demonstration and discussion of biomechanical effects in prosthetics and orthotics

Chair: Daniel Heitzmann

Time duration: 3–5 hours including breaks

The symposia/workshop will be held in one of the gait-labs of the Heidelberg University Clinics. One person with a lower limb amputation and one person with a lower limb orthosis will be present for life demonstration.

General course of the workshop:
• A brief introduction into prosthetics and orthotics (with an emphasis on the devices of the two users)

Prosthetics:
• Different prosthetic alignments will be tested with a lower limb amputee. Observational gait analysis of the user will be performed by the participants for each alignment modification. Effects of alignment modifications will be checked and visualised static via the LASAR posture alignment device. Dynamic alignment will be checked and visualised via video vector analysis. Results of a full conventional clinical gait analysis with the user in different alignment modifications will be available for discussion.

Orthotics:
• Effects of a lower limb orthosis and different tuning options of the device will be examined. The approach will be similar to the alignment variations in prosthetics. Static and dynamic effects are determined. Again, results of a full conventional clinical gait analysis with the user in different alignment modifications will be available for discussion.
• The workshop will be finished by a brief wrap-up session as summary.

Wednesday, 9 September 2015, 14:00–17:30 h

Seminar 4 Visualisation of motion capture data for better diagnosis and training

Chair: Bertram Müller, Jaap Harlaar

Intended for: Clinicians (PTs, physicians, orthotists and prosthetists) & scientists (biomechanical engineers, human movement scientist, psychologists)

Understanding motion capture data into relevant information is a challenge we face on a daily basis. This includes differencing valid from invalid graph’s and the reasoning and also the significance of the data for the intended purpose, which could be clinical or performance related. And once understood, there is still the task on passing such information to third parties. In order to optimise this process we would need to know the specific expectations of the third person for the best fitting of the information.

This symposium will involve both visualisation to enhance understanding of complex data as well as presenting key biomechanical parameters in a meaningful manner to patients.

Introduction: Visualization in biomechanics – challenges, problems... and solutions?
Bertram Müller

Part 1: Visualisation to enhance diagnostics

MobileBody: Immersive evaluation tools for a practical gait analysis Workshop (bring your laptop!)
Francisco Geu, Universität Duisburg-Essen, Duisburg

Smart gaming to improve motor dysfunction in children with neurological diseases’
Marjolein van der Krogt, VU University Medical Center, Amsterdam

Part 2: Visualisation of a therapeutic intervention

Real time feedback to minimise kneeload in knee osteo arthritis
Josien van den Noort, VU University Medical Center, Amsterdam

Visualisation of biomechanical data to stroke patients to accelerate their rehabilitation process
Andrew Murphy, University of Strathclyde, Glasgow
Wednesday, 9 September 2015, 14:00–17:30 h

Seminar 5 Measuring upper extremity movement in clinics and sport: Theory and practice

Chair: Stefan van Drongelen, Andrea Cutti

Aim: To introduce, describe and practice with quantitative motion capture techniques for upper extremity movements.

Intended for: Clinicians (occupational therapists, physical therapists, sport therapists), engineers, biomechanists, and kinesiologists measure the movements of the upper extremities in children and adults either to treat or to assess. Prior experience analyzing and interpreting motion analysis data is beneficial, but not required.

Topic: (Preliminary, further detail to appear in the final program)

Clinical and biomechanical movement analysis of the upper extremity is complex due to the multiple degrees of freedom and wide range of tasks afforded to the upper limb. The aim of this tutorial is to present:

1. A framework to assess and measure quantitative joint motion of the upper extremity
2. Camera-based systems: standardized coordinate systems and marker-set, including different options for scapula tracking
3. Inertial and magnetic sensors: crucial review and upper-extremity protocols
4. Available software for data processing
5. Clinical reporting, scoring and interpretation (clinical cases)
6. Integration of kinematics and surface EMG data

The symposium will be complemented by a set of live demos of available hardware and software, including inertial and magnetic ambulatory systems.

Registration

Pre-Congress

- Gait Course/All Seminars Members 560,00 EUR
- Gait Course/All Seminars Non-Members 620,00 EUR
- Gait Course/All Seminars Students 460,00 EUR
- Single Seminar Ticket (Members & Non-Members) 170,00 EUR

Online-Registration

Meeting Language

English

Credits

The Gait Course was certified by the Doctor’s chamber of Baden-Württemberg with 27 Credits (Cat. A)

Seminars

All seminars were certified by the Doctor’s chamber of Baden-Württemberg with 4 Credits per Seminar (Cat. A)

Industrial Exhibition

We thank the exhibitors of the ESMAC Pre-Congress for their extraordinary support!

- **Gottinger Handelshaus OHG** 85604 Zorneding, Germany
- **Simi GmbH** 85716 Unterschleißheim, Germany
Venue
Address
Heidelberg University Hospital
Department of Orthopaedics
Schlierbacher Landstrasse 200a
69118 Heidelberg, Germany

Accommodation
To your convenience we have contacted hotels within Heidelberg that are suitable to our congress visitors. Please use the following link to receive the special offers for the selected hotels:
www.esmac2015.com/accommodation/

There is also the possibility of low budget accommodations such as youth hostels. For booking a youth hostel please follow the link:
www.jugendherberge-heidelberg.de

Travel Information
Journey description from Heidelberg central station (Hauptbahnhof) to Heidelberg University Hospital Department of Orthopaedics:

By Tram
From Heidelberg central station (Hauptbahnhof) please take the tram S1 in the direction of Osterburken, Bahnhof. Leave the tram at Schlierbach, Orthopädie. The journey takes about 10 minutes.

By Bus
From Heidelberg central station (Hauptbahnhof) please take the bus RNV 32 in the direction of Heidelberg, Universitätsplatz. Leave the bus at Heidelberg, Bismarckplatz. Take the bus RNV 35 in the direction of Neckargemünd, Bildungszentrum. Leave the bus at Schlierbach, Orthopädie. The journey takes about 25 minutes.

24th Annual Meeting of the ESMAC

Thursday, 10 September 2015

<table>
<thead>
<tr>
<th>Time</th>
<th>Location</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>09:00</td>
<td>Neue Aula</td>
<td>BL Baumann Lecture</td>
</tr>
<tr>
<td>09:30</td>
<td>Hörssaal 14</td>
<td>OS01 Best-Paper-Session – Outcomes</td>
</tr>
<tr>
<td>10:00</td>
<td>Foyer 1st floor</td>
<td>Coffee Break</td>
</tr>
<tr>
<td>11:00</td>
<td></td>
<td>OS02 Rehab Adults</td>
</tr>
<tr>
<td>12:00</td>
<td></td>
<td>OS03 Muscle Function and Imaging</td>
</tr>
<tr>
<td>13:00</td>
<td></td>
<td>Lunch Break</td>
</tr>
<tr>
<td>13:30</td>
<td></td>
<td>KL1 Keynote Lecture 1</td>
</tr>
<tr>
<td>14:00</td>
<td></td>
<td>OS04 Foot and Ankle</td>
</tr>
<tr>
<td>15:00</td>
<td></td>
<td>Coffee Break</td>
</tr>
<tr>
<td>15:30</td>
<td></td>
<td>OS05 Foot and Ankle</td>
</tr>
<tr>
<td>16:00</td>
<td></td>
<td>OS06 Trunk and Upper Extremity</td>
</tr>
<tr>
<td>16:30</td>
<td></td>
<td>OS07 Pathology and Gait Interpretation</td>
</tr>
<tr>
<td>17:00</td>
<td></td>
<td>OS08 Upper Extremity</td>
</tr>
<tr>
<td>17:30</td>
<td></td>
<td>OS09 Osteoarthritis</td>
</tr>
<tr>
<td>18:00</td>
<td></td>
<td>ESMAC AGM Meeting</td>
</tr>
<tr>
<td>18:30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19:00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19:30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20:00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20:30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21:00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Timetables

Friday, 11 September 2015

<table>
<thead>
<tr>
<th>Time</th>
<th>Neue Aula</th>
<th>Hörsaal 14</th>
<th>Foyer 1st floor</th>
</tr>
</thead>
<tbody>
<tr>
<td>09:00</td>
<td>KL2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>09:30</td>
<td>OS10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10:00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10:30</td>
<td>Coffee Break</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11:00</td>
<td>OS11</td>
<td>OS12</td>
<td></td>
</tr>
<tr>
<td>12:00</td>
<td>Trunk – Gait and Balance</td>
<td>Multilevel Problems in Cerebral Palsy</td>
<td></td>
</tr>
<tr>
<td>12:30</td>
<td>Lunch Break</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13:00</td>
<td>OS13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14:00</td>
<td>Paediatric Gait</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14:30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15:00</td>
<td>Coffee Break</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15:30</td>
<td>OS17</td>
<td>OS18</td>
<td></td>
</tr>
<tr>
<td>16:00</td>
<td>Feedback based Rehabilitation</td>
<td>Orthotics</td>
<td></td>
</tr>
<tr>
<td>16:30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17:00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17:30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18:00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19:00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19:30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20:00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20:30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21:00</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Saturday, 12 September 2015

<table>
<thead>
<tr>
<th>Time</th>
<th>Neue Aula</th>
<th>Hörsaal 14</th>
<th>Foyer 1st floor</th>
</tr>
</thead>
<tbody>
<tr>
<td>09:00</td>
<td>KL3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>09:30</td>
<td>OS19</td>
<td>OS20</td>
<td></td>
</tr>
<tr>
<td>10:00</td>
<td>Tone, Weakness and Coordination</td>
<td>Prosthetics</td>
<td></td>
</tr>
<tr>
<td>10:30</td>
<td>Coffee Break</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11:00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11:30</td>
<td>OS21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12:00</td>
<td>Methods and Models</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12:30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13:00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13:30</td>
<td>AC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14:00</td>
<td>Award Ceremony</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Leonhard Döderlein (Baumann Lecture)

Leonhard Döderlein started his training in paediatric orthopaedic surgery as early as 1983 when he joined the Orthopaedic Hospital in Rummelsberg under Prof. Thom, who was specialized in the orthopaedic management of patients with poliomyelitis and cerebral palsy. Here he gained his decisive orthopaedic inputs that last until today. From 1986 until 1989 he worked in the Orthopaedic University Hospital in Freiburg where he established a special clinic for handicapped patients with special needs.

From 1989 to 2007 he worked as a consultant surgeon in the Orthopaedic University Hospital in Heidelberg in the Department of Paediatric Orthopaedics where he was head of the Cerebral Palsy Section and Prosthetics and Orthotics. In Heidelberg he had been successful to introduce a 3D instrumented gait laboratory since 1995. This gait laboratory has been busy until today and works as a close cooperation of clinical and biomedical disciplines. The 1999 ESMAC meeting in Heidelberg had been organized together with the gait analysis team and was a quite successful event.

From 2007 onwards he has been chief surgeon of the Paediatric Orthopaedic Hospital in Aschau, Germany, where he could continue his interest in combining movement analysis and clinical work. The gait lab in Aschau is a very active one. Its main research areas are pathologic muscle physiology, torsional problems and foot deformities and their effects on gait. Leonhard Döderlein’s main focus is still the integrated approach to gait disorders of neurologic and non-neurologic origins and he uses 3D gait analysis as an integral part of the treatment decision, may it be surgical or conservative, and control. His further interests are foot deformities and upper limb reconstruction. In his leisure time he enjoys family activities and he is a busy postal historian, a discipline which started as a simple stamp collector but then turned out to be another time consuming hobby.

Scott Delp

Scott Delp is the James H. Clark Professor, Founding Chairman of the Department of Bioengineering at Stanford, and Director of the National Center for Simulation in Rehabilitation Research. Delp transformed the field of biomechanics by creating highly accurate computer models of musculoskeletal structures and providing them to researchers worldwide using a software system (OpenSim) that he and his team developed. Delp invented fundamental technology for surgical navigation that is now in wide clinical use. Together with Mark Schnitzer and their students, Delp developed novel microendoscopes that allow realtime in vivo imaging of human muscle microstructure. Together with Karl Deisseroth and their students, Delp pioneered the use of optogenetics to control activity in the peripheral nervous system leading to important inventions for treating paralysis, spasticity and pain.

Source: https://med.stanford.edu/profiles/scott-delp

Katja Mombaur

Katja Mombaur is Professor at the Interdisciplinary Center for Scientific Computing (IWR) at the University of Heidelberg in Germany, where she heads the Optimization in Robotics & Biomechanics group and the Robotics Lab. She holds a diploma degree in Aerospace Engineering from the University of Stuttgart (1995) and a Ph.D. degree in Mathematics from the University of Heidelberg (2001). In 2002, she was a Postdoctoral Researcher in the Robotics Lab at Seoul National University, South Korea. From 2008 – 2010 she worked as a Visiting Researcher at LAAS-CNRS in Toulouse, France.

She is coordinating the EU Project KoroIBot, partner in the EU project MOBOT, as well as PI and Executive Committee Member of the Graduate School HGS MathComp at IWR. Her research interests include the modeling, optimal and inverse optimal control of walking motions of humans and robots with a particular focus on walking stability. She is also interested in applying optimization in the design and control of orthoses and prostheses and in functional electrical stimulation.

Thomas Schack

Thomas Schack is a professor for Neurocognition and Action – Biomechanics at Bielefeld University (Germany). Dr. Schack’s main research interest concerns the cognitive architecture of movement, mental movement representation, mental training and the neurophysiological basis of complex movement. Additionally he is interested in research topics like mental control, attention and cognitive robotics. An important component in Thomas Schack’s research laboratories (Cognition and Action-Labs: COALA) is the combination of experimental and modelling methods from Psychology, Biomechanics, Cognitive Science and Robotics to learn about the cognitive construction and principles of human actions. The research results are checked in high performance sports. Thomas Schack received excellence certificates in the fields of sport psychology and movement science, e.g. the TOYOTA-Scientific Award in 2002. He is recently Vice-President of the International Society of Sportpsychology (ISSP) and Principal Investigator (PI) and Co-coordinator of the Center of Excellence “Cognitive Interaction Technology” at Bielefeld University. Furthermore he is PI in Large Scale Projects like “Intelligent Coaching Space” and “Kognihome” where motor control research meets computer science and cognitive informatics to support motor activity of humans in future sport and lodging settings.
The many faces of drop foot
Döderlein L. (Aschau, Germany)
Abstract available on page 36

OS01-01 8’+2’ A kinematic analysis of one-leg vertical jump on average 23 years after injury of the anterior cruciate ligament
Markström J. (Umeå, Sweden)

OS01-02 8’+2’ Ponseti method has superior functional outcome to surgery in clubfoot – prospective randomized long-term trial
Svehlik M. (Graz, Austria)

OS01-03 8’+2’ Long-term effects of patellar tendon advancement on patella height and proximal tibial growth
Stout Jean (St. Paul, USA)

OS01-04 8’+2’ Predicting surgery effect on knee kinematics in cerebral palsy
Galarraga C. O. (St. Fargeau-Ponthierry, France)

OS01-05 8’+2’ Effect of continuous intrathecal Baclofen therapy on ambulatory children with cerebral palsy
Sees Juliane (Wilmington, United Kingdom)

OS02-01 8’+2’ Cognitive function and walking speed in older adults performing four walking tasks
Duffy Kim (Colchester, United Kingdom)

OS02-02 8’+2’ Quantifying changes in gait over the adult life span using the iPod
Lamoth Claudine (Groningen, Netherlands)

OS02-03 8’+2’ Evaluation of adaptive gait capabilities should be included in falls risk assessment
Egan Sonja (Dublin, Ireland)

OS02-04 8’+2’ The energy of walking in stroke survivors: (How) does holding a handrail work?
Houdijk H. (Amsterdam, Netherlands)

OS02-05 8’+2’ Characterization of elderly, stroke and chorea populations using gait variability and stability indexes
Bisi Maria Christina (Bologna, Italy)

OS02-06 8’+2’ Contribution of personalized AVATAR for post stroke gait rehabilitation: A preliminary study
Agopyan H. (Nice, France)

OS02-07 8’+2’ Modular organization in lower limbs of persons with multiple sclerosis after rehabilitation
Jonsdottir Johanna (Milan, Italy)

OS03-01 8’+2’ Wavelet spectra of surface EMG during gait in children with di- and tetraplegic spastic cerebral palsy
Brachi-Schweizer Katrin (Basel, Switzerland)

OS03-02 8’+2’ Length of the gastrosoleus complex and dynamic EMG of peroneus longus and gastrocnemius medialis in hemiplegic children with equinovarus: The hypothesis of the spastic cocontraction
Boulay C. (Fuveau, France)

OS03-03 8’+2’ Reliability and validity of 3D freehand ultrasound
Cenni F. (Leuven, Belgium)

OS03-04 8’+2’ Echogenicity intensity of the medial gastrocnemius and tendon achilles in age matched CP and TD children
Schless S. (Pellenberg, Belgium)

OS03-05 8’+2’ Differences in co-contraction level between CP and TD children during a functional and isometric strength assessment
Goudriaan Marije (Pellenberg, Belgium)

OS03-06 8’+2’ Effect of muscles’ activation on proximal femoral growth tendency
Yadav Priti (Stockholm, Sweden)
PS05-07 Is flexibility of paediatric flatfeet during heel-raise gender-specific? Krautwurst Britta K. (Heidelberg, Germany)

PS05-08 Evaluation of clubfoot treatment with a dynamic orthosis Manousaki Evgenia (Lund, Sweden)

PS05-09 Comparison of multi-segmental kinematic between normal and flat foot during squat phase of anterior and lateral step down test Lucareli P. (Sao Paulo, Brazil)

PS05-10 Repeatability of a 3D multi-segment foot model during anterior and lateral step down tests Lucareli P. (Sao Paulo, Brazil)

15:30–16:30 PS06 Poster Session: Trunk and Upper Extremity Foyer 1st Floor

Chair: Armand S. (Geneva, Switzerland)

PS06-01 Balance recovery reaction in individuals with nonspecific low back pain: Interactive effects of attention and postural challenge Etemadi Yasaman (Tehran, Iran)

PS06-02 Normal subjects with different sagittal spino-pelvic morphotypes may walk differently Bakouny Z. (Beirut, Lebanon)

PS06-03 Lumbopelvic rhythm in healthy subjects performing squat-lifting and finger-floor-distance tasks Widhalm K. (Vienna, Austria)

PS06-04 Upper limb kinematic calculations of a biomechanical model for motion analysis Dawson D. (Cork, Ireland)

PS06-05 Humeral retroversion: The complexity of assigning reference axes in 3d and its influence on measurement van de Bunt F. (Amsterdam, Netherlands)

PS06-06 Three dimensional analysis of shoulder movement patterns in shoulders with anterior instability: A comparison of kinematics with normal shoulders and the influence of stabilisation surgery Wright A. (Manchester, United Kingdom)

PS06-07 Three dimensional kinematic analyses of movement control of individual fingers post-stroke Johansson Anna-Maria (Umeå, Sweden)

PS06-08 The influence of specific upper limb rehabilitation in a post-stroke patients on the rehacing and on the upper limbs movements during gait Planta Lucia (Oggebbio, Italy)

PS06-09 Objective measurement of fine motor skills in common diseases of the hand Pippich Katharina (Munich, Germany)
Scientific Programme

Thursday, 10 September 2015

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
<th>Room</th>
<th>Chair</th>
</tr>
</thead>
<tbody>
<tr>
<td>15:30–16:30</td>
<td>PS07 Poster Session: Pathology and Gait Interpretation</td>
<td>Foyer 1st Floor</td>
<td>Viehweger Elke (Marseille, France)</td>
</tr>
<tr>
<td>PS07-01</td>
<td>Gait pattern comparison in moderate and severe CMT patients</td>
<td>Hwang Sun Hee (Seoul, South Korea, ROK)</td>
<td></td>
</tr>
<tr>
<td>PS07-02</td>
<td>The relation between kinematic parameters and gait efficiency in children with crouch gait pattern</td>
<td>Pouliot-Laforte Annie (Montreal)</td>
<td></td>
</tr>
<tr>
<td>PS07-03</td>
<td>Surface EMG in juvenile patients with cerebral palsy: What makes clinical interpretation difficult?</td>
<td>Romkes Jacqueline (Basel, Switzerland)</td>
<td></td>
</tr>
<tr>
<td>PS07-04</td>
<td>Internal rotation gait as a compensatory mechanism to restore hip abduction moment arm in children with cerebral palsy</td>
<td>Niklasch Mirjam (Heidelberg, Germany)</td>
<td></td>
</tr>
<tr>
<td>PS07-05</td>
<td>Clinical decision making in spastic bilateral CP – planning interventions using clinical gait analysis: A case study</td>
<td>Alvela Mari (Haapsalu, Estonia)</td>
<td></td>
</tr>
<tr>
<td>PS07-06</td>
<td>Size and length of the medial gastrocnemius and tendon in typically developing and cerebral palsy children</td>
<td>Cenni F. (Leuven, Belgium)</td>
<td></td>
</tr>
<tr>
<td>PS07-07</td>
<td>Neural correlates for freezing of gait after hypoxic-ischemic brain injury. A preliminary study</td>
<td>Kim Na Young (Seoul, South Korea, ROK)</td>
<td></td>
</tr>
<tr>
<td>PS07-08</td>
<td>Methodological reliability of echogenicity intensity in muscle ultrasonography</td>
<td>Schless S. (Pellenberg, Belgium)</td>
<td></td>
</tr>
<tr>
<td>PS07-09</td>
<td>Knee malalignment influences the electromyographic activity of selected lower limb muscles during gait in boy adolescents</td>
<td>Anbarian M. (Hamedan, Iran)</td>
<td></td>
</tr>
<tr>
<td>PS07-10</td>
<td>Dynamic stability in patients with joint hypermobility syndrome during steady state treadmill walking</td>
<td>Richards Rosie (Amsterdam, Netherlands)</td>
<td></td>
</tr>
<tr>
<td>PS07-11</td>
<td>Differences in spatio temporal parameters between paraplegic and tetraplegic patients during primary rehabilitation in the first year post injury</td>
<td>Hartmann Kathrin (Nottwil, Switzerland)</td>
<td></td>
</tr>
<tr>
<td>PS07-12</td>
<td>Repeatability and treatment sensitivity of the repetitive movement test in children with spastic cerebral palsy</td>
<td>Piening M. (Amsterdam, Netherlands)</td>
<td></td>
</tr>
<tr>
<td>PS07-13</td>
<td>Gait synthesis assessment of the effect of crouch gait and hip internal rotation on “stiff-knee” gait</td>
<td>Pimenta dos Santos Alexandra (St. Fargeau-Ponthierry, France)</td>
<td></td>
</tr>
<tr>
<td>PS07-14</td>
<td>EEG control of gait in children with cerebral palsy. Preliminary data for the construction of a brain computer interface</td>
<td>Lerma Lara S. (Madrid, Spain)</td>
<td></td>
</tr>
<tr>
<td>PS07-16</td>
<td>Normalization of EMG amplitude using manual muscle testing: Perspective in clinical gait analysis</td>
<td>Tabard Anne (Geneva, Switzerland)</td>
<td></td>
</tr>
<tr>
<td>PS07-17</td>
<td>Gait analysis, metabolic energy expenditure and fuctional evaluation in children with Duchenne muscular dystrophy</td>
<td>Vasco Gessica (Rome, Italy)</td>
<td></td>
</tr>
<tr>
<td>PS07-18</td>
<td>Gait deviation index for the assessment of normal pressure hydrocephalus</td>
<td>Lucareli P. (Sao Paulo, Brazil)</td>
<td></td>
</tr>
</tbody>
</table>

16:30–17:45

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
<th>Room</th>
<th>Chair</th>
</tr>
</thead>
<tbody>
<tr>
<td>16:30–17:45</td>
<td>OS08 Oral Session: Upper Extremity</td>
<td>Neue Aula</td>
<td>Fradet Laetitia (Chasseneuil du Poitou, France) van Drongelen S. (Frankfurt, Germany)</td>
</tr>
<tr>
<td>OS08-01</td>
<td>Three dimensional movement analysis of the upper limb during activities of daily living in children with obstetric brachial plexus palsy: Comparison with healthy controls</td>
<td>Mahon Judy (Dublin, Ireland)</td>
<td></td>
</tr>
<tr>
<td>OS08-02</td>
<td>Long-term functional outcome of children with total obstetric brachial plexus palsy after surgery</td>
<td>Zietz Doerte (Bochum, Germany)</td>
<td></td>
</tr>
<tr>
<td>OS08-03</td>
<td>Quantification of dystonia in a group of children with bilateral CP using 3D upper limb motion analysis parameters</td>
<td>Pons Roser (Athens, Greece)</td>
<td></td>
</tr>
<tr>
<td>OS08-04</td>
<td>Impact of elbow angular velocity on muscle activation and coactivation during active elbow extension and supination in children with spastic hemiplegic cerebral palsy</td>
<td>Sarcher Aurelie (Nantes, France)</td>
<td></td>
</tr>
<tr>
<td>OS08-05</td>
<td>The objective measurement of diadochokinesis in children with bilateral spastic cerebral palsy</td>
<td>Mattner Sarah (Heidelberg, Germany)</td>
<td></td>
</tr>
<tr>
<td>OS08-06</td>
<td>Does kinematics add meaningful information to clinical assessment in upper limb rehabilitation after stroke?</td>
<td>Pianta Lucia (Oggebbio, Italy)</td>
<td></td>
</tr>
<tr>
<td>OS08-07</td>
<td>Augmented kinematic feedback is more effective to promote scapulothoracic control and performance than clinician-provided feedback</td>
<td>Antunes Ana (Lisboa, Portugal)</td>
<td></td>
</tr>
</tbody>
</table>
09:00–09:30 KL Keynote Lecture 2 Neue Aula
 Model-based optimization for human movement analysis
 Mombaur Katja (Heidelberg, Germany)
 Abstract available on page 37

09:30–10:30 OS10 Best-Paper-Session: Pathologies and Methods Neue Aula
 Chairs: Miller F. (Wilmington, United Kingdom)
 Gutierrez Farewik L. (Stockholm, Sweden)

OS10-01 8’+2’ Altered transverse plane leg alignment and forefoot supination predispose paediatric flatfeet for knee overloading
 Hösl M. (Aschau, Germany)

OS10-02 8’+2’ A novel method to evoke stretch reflexes during gait using treadmill accelerations
 Sloot Lizeth (Amsterdam, Netherlands)

OS10-03 8’+2’ Inter- and intrarater reliability of an international consensus-based gait classification system in children with cerebral palsy
 Nieuwenhuys Angela (Pellenberg, Belgium)

OS10-04 8’+2’ Validation of hip joint center localization methods during gait analysis using 3D EOS imaging in typically developing and cerebral palsy children
 Assi A. (Beirut, Lebanon)

OS10-05 8’+2’ Standing & walking posture in children with bilateral spastic cerebral palsy: Are they related?
 Fry Nicola (Borehamwood, United Kingdom)

OS10-06 8’+2’ Knee moment-knee angle characteristics and muscle morphology in children with spastic cerebral palsy selected for medial hamstring lengthening
 Haberfehlner Helga (Amsterdam, Netherlands)

10:30–11:00 Coffee Break

11:00–12:30 OS11 Oral Session: Trunk – Gait and Balance Neue Aula
 Chairs: Romkes Jacqueline (Basel, Switzerland)
 Stief F. (Frankfurt, Germany)

OS11-01 8’+2’ Postural strategy and trunk muscle activation during prolonged standing in chronic low back pain patients
 Ringheim Inge (Stavern, Norway)

OS11-02 8’+2’ Do children with congenital blindness have balance deficits? Evidence from a posturography study with traditional and new parameters
 Petrarca M. (Rome, Italy)
OS11-03 8’+2’ The influence of sacroiliac dysfunction on the plantar load distribution patterns in gait – a paedobarographic study
Rieken J. (Rosenheim, Germany)

OS11-04 8’+2’ Trunk kinematics and lower lumbar spinal loading during paediatric cerebral palsy gait
Kiernan D. (Dublin, Ireland)

OS11-05 8’+2’ Head and trunk movements during turn while walking in children with cerebral palsy
Bartonek Asa (Stockholm, Sweden)

OS11-07 8’+2’ Excessive lateral trunk lean during walking in cerebral palsy: Does it return to normal during running?
Böhm H. (Aschau, Germany)

OS11-08 8’+2’ The reliability of the segmental assessment of trunk control (SATCo) in children with cerebral palsy
Hansen Lisbeth (Hvidovre, Denmark)

OS11-06 8’+2’ Relationship between spino-pelvic parameters and gait kinematics in children with cerebral palsy
Massaad Abir (Beirut, Lebanon)

11:00–12:30 OS12 Oral Session: Multilevel Problems in Cerebral Palsy Hörsaal 14
Chairs: Novacheck T. (St. Paul, USA)
Gough M. (London, United Kingdom)

OS12-01 8’+2’ Causes of the internal hip rotation gait profile in children with cerebral palsy
Massaad Abir (Beirut, Lebanon)

OS12-02 8’+2’ Long-term changes in dynamic hip rotation following femoral derotational osteotomy
Schwartz Marta (St. Paul, USA)

OS12-03 8’+2’ Long-term outcome of tibial derotation osteotomies in children with cerebral palsy
Serhan M. (Wilmington, United Kingdom)

OS12-04 8’+2’ Selective dorsal rhizotomy with or without correction of bony deformities in children with cerebral palsy: The effect on gait
Huenaerts Catherine (Pellenberg, Belgium)

OS12-05 8’+2’ Patella lowering is effective in the treatment of crouch gait in cerebral palsy: A clinical and biomechanical retrospective comparative study
Desailly E. (St. Fargeau-Ponthierry, France)

OS12-06 8’+2’ Changes in modular control of gait following SEMLS in children with cerebral palsy
Loma-Ossorio García Marta (Madrid, Spain)

OS12-07 8’+2’ Gait abnormalities in neglected adult cerebral palsy patients
Aydiil S. (Istanbul, Turkey)

OS12-08 8’+2’ Multilevel surgery in adults with cerebral palsy
Putz Cornelia (Heidelberg, Germany)

12:30–13:30 Lunch Break

13:30–15:00 OS13 Oral Session: Paediatric Gait Neue Aula
Chairs: Svehlik M. (Graz, Austria)
Stout Jean (St. Paul, USA)

OS13-01 8’+2’ Weekly changes of gait temporal parameters during the first two months of independent walking: a longitudinal study
Bisi Maria Cristina (Bologna, Italy)

OS13-02 8’+2’ Characterising variability of gait in ambulant children under five
Stebbins Julie (Oxford, United Kingdom)

OS13-03 8’+2’ Age-dependent flexibility in paediatric flatfeet monitored during heel-raise
Krautwurst Britta K. (Heidelberg, Germany)

OS13-04 8’+2’ Complexity of muscle activity does not change in typically developing children walking on a treadmill at multiple slopes and speeds
Rozumalski A. (St. Paul, USA)

OS13-05 8’+2’ Associations of the mechanical, anthropometric and gait contributors to the knee adduction moment during paediatric gait
Mahaffey R. (London, United Kingdom)

OS13-06 8’+2’ Gait patterns of children with Charcot-Marie-Tooth disease
Wojciechowski Elisabeth (Westmead, Australia)

OS13-07 8’+2’ The impact of laterality on gait in children with clubfoot
Lööf Elin (Stockholm, Sweden)

OS13-08 8’+2’ Gait deviations in transverse plane after SCFE in dependence of the femoral offset
Westhoff Bettina (Düsseldorf, Germany)

OS13-09 8’+2’ Alterations in gait and muscle function in adolescent boys with haemophilia
Suckling L. (London, United Kingdom)

15:00–15:30 Coffee Break
15:30–16:30 PS15 Poster Session: Methods and Models Foyer 1st Floor

Chair: Postans N. (Oswestry, United Kingdom)

PS15-01 The effect of a novel footwear telemetry antenna system on the spatio-temporal characteristics of gait in an elderly population at low risk of falling Brennan C. (Dublin, Ireland)

PS15-02 Predictive simulations of perturbed human posture to explore balance control strategies in the young and the elderly Afschrift M. (Leuven, Belgium)

PS15-03 Accelerometric analysis of gait in young and elderly subjects: Frequency analysis Bisi Maria Cristina (Bologna, Italy)

PS15-04 Walking speed in older adults under different walking challenges Duffy Kim (Colchester, United Kingdom)

PS15-05 Responses of knee kinematics to controlled lateral perturbations van den Noort Josien (Amsterdam, Netherlands)

PS15-06 Assessment of gait performance variability as potential indicator of fall risk: Study design Svoboda Z. (Olomouc, Czech Republic)

PS15-07 A comparison of non-motorized treadmill gait kinematics to both overground and motorized treadmill locomotion Fullenkamp A. (Bowling Green, USA)

PS15-08 Kinematics of turning during ambulation Jawad A. (Sydney, Australia)

PS15-09 The effect of a novel footwear telemetry antenna system on the spatio-temporal characteristics of gait and running in a healthy adult population Brennan C. (Dublin, Ireland)

PS15-10 Comparison of an inertial sensor based motion measurement system with a 3D-reflex marker based motion capture system Seidel D. (Stuttgart, Germany)

PS15-11 Influence of kinematics, anthropometry and kinetics data errors on inverse dynamics solutions during running Kim H. (Seto, Japan)

PS15-12 Markerless motion capture: validity of Microsoft kinect cameras and iPi soft Arulampalam J. (Sydney, Australia)

PS15-13 Repeatability study of the cast model for gait analysis Pinzone Ornella (Salerno, United Kingdom)

PS15-14 Modifications of leg swing related to the probability of being moved Castellote J. (Madrid, Spain)

PS15-15 Comparison of a bespoke biomechanical model to the industry gold standard for calculation of lower limb kinematics during walking Millar Lindsey (Glasgow, United Kingdom)
<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
<th>Venue</th>
<th>Chairs</th>
<th>Talks</th>
</tr>
</thead>
<tbody>
<tr>
<td>15:30–16:30</td>
<td>PS16 Poster Session: Orthotics</td>
<td>Foyer 1st Floor</td>
<td>Chair: Beyaert C. (Metz, France)</td>
<td>PS16-01 Effect of ankle foot orthosis on crouch gait in patients with cerebral palsy: What can we expect? Böhm H. (Aschau, Germany)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>PS16-02 Spastic hemiparetic gait pattern after over 6 month period of using carbon-fibre anterior leaf spring AFO? Flaws and advantages Alvela Mari (Haapsalu, Estonia)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>PS16-03 The contribution of a rigid and a spring-hinged Ankle Foot Orthosis to ankle work in children with cerebral palsy Kerkum Yvette (Amsterdam, Netherlands)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>PS16-04 Determining and implementing the individual normal posture in making a negative cast to produce orthoses for patients with neurological gait disorders Sabbagh D. (Lüneburg, Germany)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>PS16-05 Technically controlling joint angles while making a negative cast as basis of functional orthoses for patients with neurological gait disorders Sabbagh D. (Lüneburg, Germany)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>PS16-06 A new leg prosthesis to improve lateral balance in prosthetic walking van Hal E. (Groningen, Netherlands)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>PS16-07 Feasibility and reproducibility of using an exoskeleton able to emulate muscle contractures during walking Attias M. (Geneva, Switzerland)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>OS17-02 8’+2’ Real-time feedback to improve gait in children with cerebral palsy van der Krogt Marjolein (Amsterdam, Netherlands)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>OS17-03 8’+2’ The effect of self-paced speed and virtual reality on treadmill gait in children with cerebral palsy Stoot Lizeth (Amsterdam, Netherlands)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>OS17-04 8’+2’ Kinetic comparison of walking on a treadmill versus over ground in children with cerebral palsy van der Krogt Marjolein (Amsterdam, Netherlands)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>OS18-02 8’+2’ Gait dynamics in the wide spectrum of children with arthrogryposis Eriksson Marie (Stockholm, Sweden)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>OS18-03 8’+2’ The microprocessor controlled C-brace orthosis and conventional knee-ankle-foot-orthoses: Comparative biomechanical evaluation of functionality Schmaiz T. (Göttingen, Germany)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>OS18-04 8’+2’ Optimizing knee kinematics in mid-stance by tuning the ankle foot orthoses – footwear combination of children with cerebral palsy: A case series van Beeten Barbara (Wijk aan Zee, Netherlands)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>OS18-05 8’+2’ The effects of different degrees of ankle foot orthosis stiffness on gait biomechanics and walking energy cost Kerkum Yvette (Amsterdam, Netherlands)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>OS18-06 8’+2’ Comparative effectiveness of ground reaction and solid ankle foot orthoses for crouch gait in children with cerebral palsy Schwartz M. (St. Paul, USA)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>OS18-07 8’+2’ Assessment of the rocker sole shoes on postural stability in diabetic patients with distal sensory neuropathy</td>
</tr>
</tbody>
</table>
Scientific Programme

09:00–09:30 KL Keynote Lecture 3 Neue Aula
Architecture of action and principles of motion planning
Schack T. (Bielefeld, Germany)
Abstract available on page 37

09:30–10:30 OS19 Oral Session: Tone, Weakness and Coordination Neue Aula
Chairs: Schwartz M. (St. Paul, USA)
van der Krogt Marjolein (Amsterdam, Netherlands)
OS19-01 8‘+2’ The type of spasticity predicts Botulinum toxin A treatment outcome in children with cerebral palsy
Bar-On Lynn (Pellenberg, Belgium)
OS19-02 8‘+2’ What’s the effectiveness of multilevel intramuscular Botulinum toxin A injection in patients with spastic cerebral palsy patients in a single session?
Beng K. (Istanbul, Turkey)
OS19-03 8‘+2’ Plantar flexor muscle weakness leads to stiff-knee gait
Apti A. (Istanbul, Turkey)
OS19-04 8‘+2’ Timing of maximum knee hyperextension in genu recurvatum indicates the underlying pathology in children with bilateral spastic cerebral palsy
Klotz M. (Heidelberg, Germany)
OS19-05 8‘+2’ Effect of a short walking exercise on crouch gait in children with cerebral palsy
Ballaz L. (Montreal, Canada)
OS19-06 8‘+2’ Cerebellar transcranial direct current stimulation in a child with ataxic cerebral palsy: A case report
Grecco Luanda (Boston, USA)

09:30–10:30 OS20 Oral Session: Prosthetics Hörsaal 14
Chairs: Nederhand M. (Enschede, Netherlands)
Schmalz T. (Göttingen, Germany)
OS20-01 8‘+2’ Biomechanical investigation of currently available microprocessor controlled prosthetic feet
Altenburg B. (Duderstadt, Germany)
OS20-02 8‘+2’ Evaluation of a novel prosthetic foot while walking on level ground, ascending and descending a ramp
Heitzmann D. (Heidelberg, Germany)
OS20-03 8‘+2’ Leg stiffness regulation during running with a lower limb running specific prosthesis
Houdijk H. (Amsterdam, Netherlands),
OS20-04 8‘+2’ Innovative rehabilitation for warfighters with transfemoral and transtibial amputations
Wyatt Marilynn (San Diego, USA)

09:00–09:30 OS20-05 8‘+2’ Developing a set of norm data during activities of daily living – comparison of the 3D kinematics of able-bodied and prosthesis users involving different artificial limbs
Kranzl A. (Vienna, Austria)

09:00–09:30 OS20-06 8‘+2’ Effect of stump parameters on postural stability during stance modification in transtibial amputees
Orechovska Karolina (Olomouc, Czech Republic)

10:30–11:00 Coffee Break

11:00–12:30 OS21 Oral Session: Methods and Models Neue Aula
Chairs: Frigo C. (Milano, Italy)
Houdijk H. (Amsterdam, Netherlands)
OS21-01 8‘+2’ Continuous time series analysis using a Hidden Markov Model enhances informations about joint angle functionality of human gait
Kreuzpointner F. (München, Germany)
OS21-02 8‘+2’ Comparison of gait kinematics in children using the Calibration Anatomical System Technique based model (CAST), Instituti Ortopedici Rizzoli (IOR) model and Modified Helen Hayes (MHH) model
Wachowsky M. (Stuttgart, Germany)
OS21-03 8‘+2’ Correlations between 3D subject-specific skeletal parameters and gait kinematics in asymptomatic adults
Assi A. (Beirut, Lebanon)
OS21-04 8‘+2’ Prediction of postural strategies
Dijkstra E. (Stockholm, Sweden)
OS21-05 8‘+2’ Is CoM kinematics a descriptive parameter of gait motor development?
Bisi Maria Cristina (Bologna, Italy)
OS21-06 8‘+2’ Gaitmatcher – search for gait kinematics twins
Rettig O. (Heidelberg, Germany)
OS21-07 8‘+2’ Automatising gait kinematics classification with fast and accurate machine learning algorithms
Martins R. (Lisboa, Portugal)
OS21-08 8‘+2’ Experimental assessment of the coupling between shank rotation and subtalar joint kinematics during walking
Rabuffetti M. (Milano, Italy)

12:30–13:30 Award Ceremony Neue Aula
Baumann Lecture
The many faces of drop foot
Leonhard Doederlein, Dr. med.
Hospital for Paediatric Orthopaedics, Aschau, Germany

Drop foot is a clinical entity which seems to be solved at first glance. Steppage gait is a well
known compensatory response to improve foot clearance problems caused by the dragging
foot. So why should it be difficult to treat this problem by an off the shelf drop foot orthosis
or by an appropriate muscle transfers.

Should we really bother about this frequent problem any longer? As a clinician being involved
in the treatment of different conditions which may cause drop feet I have been aware of
unpredictable results in many cases. If one considers that this problem arises from a large
variety of neurological and non neurological etiologies and that the symptoms vary in their
severity and clinical signs one wonders why there are until today no attempts for classification
nor any treatment algorithms. Gait analysis has the potential to disclose the direct consequen-
ces of foot drop on the foot, ankle and toe kinematics and also to shed light on the many
possible attempts to compensate either single or combined.

This lecture given by a paediatric orthopaedic surgeon with a long interest in clinical gait
analysis tries to arrange etiologic, diagnostic and therapeutic aspects of drop foot in a way
which may help to better select appropriate management solutions. Gait analysis data may
add important informations if one can ask relevant questions.

Dropfoot etiology should be divided into neurologic (central and peripheral) and non neurolo-
ic causes. Furthermore it is of primary importance to distinguish between static and progres-
sive underlying disorders causing this deformity. Any attempt to manage dropfoot by tendon
transfers is doomed to failure in such cases in the longer term.

For diagnostic purposes it should be ruled out whether the deformity stands alone or whether
it is combined with other problems contributing or augmenting its pathologic effects and also
affecting its compensations. Diagnostics are never complete without exactly documenting the
individually used compensatory strategies. These may occur in isolation or more frequently as
combinations of different mechanisms. A hypothesis why the individual patient uses his own
compensation should be formulated by the physician.

Keynote Lecture 1:
Optimizing Human Performance
Scott L. Delp, Ph.D., James H. Clark Professor
Stanford University, Schools of Medicine and Engineering

Driven by recent advances in wearable robotic systems, the development of technologies that
augment human performance has become a focus of intensive research. One of the challenges
in developing wearable robotic systems is understanding the interaction between wearable
robots and human users. To address this challenge we are developing an optimization frame-
work to synthesize a realistic human movement, assess how actuation provided by a wearable
robot interacts with actuation provided by human muscles, and to optimize performance of the
human-machine system. My laboratory is implementing this optimization framework in Open-
Sim, a widely used software package for analysis of human movement. I will discuss our most
recent developments and present challenges to the community that must be met to advance
our field.

Keynote Lecture 2:
Model-based optimization for human movement analysis
Katja Mombauer, Professor
Interdisciplinary Center for Scientific Computing (IWR); University of Heidelberg, Germany

Gaining fundamental understanding of human movement is important not only for clinical
applications but also e.g. for biomechanics, robotics, cognitive sciences, or character ani-
mentation. Experimental recordings by motion capture systems, force plates, or EMG can give
some insights, however for a precise dynamic reconstruction, dynamic models as well as ad-
vanced simulation and optimization techniques are required. In this talk, I will present some
of our work on dynamic and subject specific modeling of human movement, in particular on
walking motions. We use model-based optimization for human movement analysis by fitting
dynamic models to recorded data, as well for motion generation or prediction by applying
different optimality criteria to the human models. We also present the inverse optimal con-
rol approach which serves to identify optimality criteria underlying recorded motion. We pre-
sent different examples of standard walking motions in different situations and movements
with prosthesis, orthoses and external physical devices. In the latter cases, optimization can
also be applied to improve design and control of the technical devices.

Keynote Lecture 3:
Architecture of Action and Principles of Motion Planning
Thomas Schack, Professor Dr. phil.
Bielefeld University, Faculty of Psychology and Sport Sciences

This presentation examines, in a first step, the cognitive architecture of human action,
showing how it is organized over several levels and how it is built up. Basic Action Concepts
(BACs) are identified as the major building blocks on the level of mental representations.
These BACs are cognitive tools for mastering the functional demands of movement tasks.
New experimental results concerning functional links between representation structures and
motor learning in complex movements (e.g. golf) are presented. In a second step the pre-
sentation deals with principles of cognitive motor planning especially in the field of Manual
Action. We investigated in a series of studies not only motor primitives but furthermore such
integration and planning principles like sequential effects, end-state-comfort-effects and
interference-effects in uni-manual and bi-manual coordination. Results of these studies
demonstrate functional aspects and limits of motor planning and support the hypothesis
that movements are planned and executed by representations of anticipated body postures.
In a last step, the presentation deals with functional links between cognitive motor psy-
chology and robotics. I will provide first insights into the implementation of motor control
research into technical platforms (e.g. robots). A special area of our research is designed to
study how the development of structured representation (action templates) occurs in human
skill acquisition and how it can be applied in robotics. Another question is how movement
performance could be optimized with the help of Augmented and Virtual Reality platforms.
Get Together

Date: Wednesday, 9 September 2015, from 18:00 h
Location: Neue Universität Heidelberg
Address: Grabengasse 3-5, 69117 Heidelberg

We will welcome you to the Annual Meeting at a relaxed evening in the new university building which was built in 1930/31. You will have the possibility to meet and greet with colleagues.

Gala Dinner

Date: Friday, 11 September 2015, from 19:15 h
Price per Person: 80.00 EUR
Location: Heidelberg Palace
Address: Schlosshof 1, 69117 Heidelberg

The stunning location this Gala Dinner will take place at, will take your breath away. The red sandstone Heidelberg castle from the 19th century lays gorgeously set against deep green hills and crowns the Neckar valley. This architectural masterpiece of the renaissance was hit by several war actions and unfortunately wasn't spared by forces of nature as well. You are kindly invited to see this unique building and event location the castle is today and will be hosting a very special night for you.

The event will start with a Heidelberg cable car ride and offer you an exciting evening to meet with colleagues and enjoy the seated dinner. You will receive a cable car ticket with your Gala Dinner Ticket. After the festivities the party is on at the famous “Fasskeller”, a wine cellar where the night can be celebrated with music and dancing.

Cable Car Station „Kornmarkt“: Zwingerstraße 21, 69115 Heidelberg
After the Dinner there will be Bus Shuttles from the Heidelberg Palace to the Neue Universität (City Center) with departure at 23:30, 00:30 and 01:00 h

ESMAC Society

About the society

European Society for Movement Analysis in Adults and Children

The purpose of ESMAC (the European Society of Movement Analysis for Adults and Children) is to stimulate and advance scientific knowledge, professional interaction and the exchange of ideas among Society members relating to movement analysis in adults and children in clinical and research settings.

ESMAC has been active since the first meeting in Oswestry, UK in 1992. Since then numerous scientists have served on the ESMAC Board to support the scientific dialogue of researchers in the field of movement analysis and its clinical application.

For more information, feel free to visit the homepage: www.esmac.org

ESMAC Awards/Scholarships

ESMAC Travel Scholarship

Travel Scholarships are available to ESMAC members who present their research at the annual meeting and have any difficulties obtaining professional or educational funds from their home country. Five awards of upto 500 euros are available annually for travel and/or accommodation expenses. See www.esmac.org for further details.

Best Paper Award

This award is presented annually to the authors of the best scientific paper. The highest scoring abstracts are nominated as candidates for the best paper award in the programme for the meeting and the oral presentations are assessed during the meeting. The award includes expedited publication in Gait & Posture and registration for attendance of the principal author at following year’s main congress.

Mentorship Award

Two scholarships of £1000 each are now available to facilitate the existing Mentorship Programme. This enables an ESMAC member to visit another Gait Laboratory to gain specific training/experience. See www.esmac.org for further details.
ESMAC Committee

We thank Prof. Maurizio Petrarca for the successful organisation of last year’s event in Rome and who has now come to the end of his term on the board.

We are also grateful to Prof. Jaap Harlaar, Amsterdam, The Netherlands, who has led this society as President for the last 5 years. He now hands over this responsibility to Dr. Sebastian Wolf who is also this year’s local host in Heidelberg together with Dr. Thomas Dreher.

Here are the faces presently on the ESMAC Committee:

Lynn Bar-On is a Physiotherapist with a PhD in Biomedical Sciences from the KU Leuven, Belgium. As a new ESMAC Board member, she is in charge of the mentorship program (find out more on the ESMAC website and via mentor-ship@esmac.org).

Eva Weidenheim Broström, Associate Professor and physiotherapist with a PhD in Paediatric Science from the Karolinska Institutet, Stockholm, Sweden. As a new ESMAC board member, she is in charge of the travel scholarship (find out more on the ESMAC website and via scholarships@esmac.org).

Angela Tatay Diaz is a Paediatric Orthopaedic Surgeon at Hospital Universitario Virgen del Rocio in Sevilla, Spain. As a new ESMAC Board member, she is in charge of PR & Communication with the aim of promoting ESMAC externally and establishing a more fluent relationship between members and the Board.

Thomas Dreher is a senior Paediatric Orthopaedic and Trauma Surgeon at the Clinic for Orthopaedic and Trauma Surgery of the Heidelberg University who specialises in the treatment of neurogenic disorders in children and adults. He is implementing the field of gait and movement analysis to clinical practice. As a member of the ESMAC Board he is responsible for Education and Career Development. Thomas is furthermore Associated Editor and upcoming Editor-In-Chief of the Gait & Posture Journal.

Andreas Kranzl is a Sport Scientist with a PhD from the University of Vienna, Austria. He is the head of the gait analysis laboratory at the Orthopaedic Hospital Speising, Vienna, Austria. As an ESMAC Board member, he is responsible for the ESMAC web page.

Julie Stebbins has been part of the ESMAC Board since 2013. She has taught on the Gait Course since 2005, and has been coordinating the Course since 2012. She currently serves on the Board as Secretary.

Martin Svelik is a certified Paediatric Orthopaedic Surgeon working as a consultant at a Medical University of Graz, Austria. His clinical as well as scientific interest is neuro-orthopaedics, especially gait of children with cerebral palsy. As a new ESMAC Board member he will be responsible for PR & Communication.

Nicky Thompson is a Physiotherapist and Clinical Specialist in Gait Analysis at the Oxford Gait Laboratory, with a PhD in Biomedical Sciences from King’s College, London, UK. She is ESMAC Treasurer, Convenor of Best Paper Award and previously ESMAC Secretary (1992–96).

Sebastian Wolf is Physicist and has led the Gait Lab at Heidelberg University Clinics in Germany since 2001. He is an ESMAC Board member since 2014 and involved in Gait course teaching. He is ESMAC President elect for the coming period starting with this year’s meeting in Heidelberg.
ESMAC Travel Scholarship

Travel Scholarships are available to ESMAC members who present their research at the annual meeting and have any difficulties obtaining professional or educational funds from their home country. Five awards of up to 500 euros are available annually for travel and/or accommodation expenses. See www.esmac.org for further details.

We congratulate the following 5 scientists who received travel scholarships of 500 EUR each for their excellent contribution to this year’s meeting:
- Cenni Francesco, Biomedical Engineer doing his PhD at KU Leuven
- Yvette Kerkum, Movement Scientist doing her PhD at VU University Amsterdam
- Elin Lööf, Physiotherapist doing her PhD at Karolinska Institutet, Stockholm
- Pieter Meyns, Physiotherapist, is post-doctoral fellow at dep. Rehabilitation Science, KU Leuven
- Lizeth Sloot holds a MSc degree in Medical Physics and is doing her PhD at VU University Amsterdam

Best Paper Award

This award is presented annually to the authors of the best scientific paper. The highest scoring abstracts are nominated as candidates for the best paper award in the programme for the meeting and the oral presentations are assessed during the meeting. The award includes expedited publication in Gait & Posture and registration for attendance of the principal author at following year’s main congress.

Mentorship Award

Two scholarships of £1000 each are now available to facilitate the existing Mentorship Programme. This enables an ESMAC member to visit another Gait Laboratory to gain specific training/experience. See www.esmac.org for further details.

Upcoming ESMAC meetings

25th Annual Meeting of ESMAC
26th September – 1st October 2016 in Seville (Spain)

26th Annual Meeting of ESMAC
4th – 9th September 2017 in Trondheim (Norway)

27th Annual Meeting of ESMAC
3rd – 8th September 2018 in Prague (Czech Republic)

Save the date to be there!

For more information, feel free to visit the homepage: www.esmac.org
Company Profiles
(in alphabetical order)

The International AKU-Societies is a loose association of worldwide AKU-Societies supporting AKU-patients and their families. Alkaptonuria (AKU, ochronosis) is a rare genetic disease, caused by an enzymatic deficiency of the tyrosine metabolism. The resulting homogentisic acid (HGA) is accumulated and oxidised to yield the ochronotic pigment, thereby discolouring urine and connective tissues such as cartilage, tendons, ligaments, muscles, heart valve, ear and eye. Ochronotic cartilage is prone to biomechanical stress and degradation, leading to an early-onset of arthropathy. Currently, there is no cure available and treatment entails symptom relief such as pain management, physiotherapy and surgery. A FP7-funded clinical trial is presently conducted for curative treatment. In AKU there is a need for gait analysis, a documented method to quantify how movement function changes. Complementary to other investigations on AKU, it adds to the overall understanding of the disease process. An emphasis on gait and movement will be essential when evaluating the effect of interventions which eventually aim to improve the functioning of AKU patients in the context of activities of daily living.

Bertec Corporation was founded in 1987 in Columbus, Ohio by Dr. Necip Berme. An international industry leader in force measurement technology for biomechanics, Bertec specializes in gait analysis equipment, balance assessment and training, ergonomics, athletic performance, and industrial applications for specialized load cells/transducers.

Codamotion

Providing 3D Clinical Gait Analysis Systems to the world’s leading Gait Labs with the highest accuracy and most reliable 3D tracking has been a core Codamotion specialty for over 20 years.

Early adopters included the Moss Rehab Center in Philadelphia, Central Remedial Clinic (CRC) in Dublin, Chaim Sheba Medical Centre in Tel Aviv, and both University College London Hospitals and the Royal Orthopaedic Hospital in London. More recent installations have included Fontys Hogescholen in the Netherlands, and UGECAM Coubert and Grenoble Hospital, and several new labs in China and South America.

Codamotion has standard Gait Systems ready-made for labs that give the user everything from special easy-to-apply marker accessories, to the analysis protocols and report templates that ensure consistent, reliable gait analyses every time. We install; you use. Codamotion also provides a complete Lab design and specification service for those with specific measurement needs, contact us to find out more.

We look forward to meeting you at ESMAC in Heidelberg to discuss your research project and our potential solution fit, so be sure to visit our stand when you get chance.
Cometa srl is a company specialized in the development, production, and marketing of wireless EMG devices. Founded in 2001, it patented in 2005 the first wireless surface EMG system without reference electrode. Since then, many improvements have been added to the basic product, including tri-axis accelerometers, memory on board, waterproof probes and more recently inertial sensors. The development of the systems includes the creation, the hardware project, the testing, prototyping, production, certification, sale and support. COMETA is ISO 13485 certified and maintains a quality system under CE 93/42 rule for medical systems. All products are also FCC, FDA and RLJ (Radio Law of Japan) approved. It distributes its products in more than 30 countries worldwide.

CONTEMPLAS GmbH with its headquarters in Kempten/Germany, develops and distributes worldwide software solutions for general motion analysis in the sport and medicine market.

With the motion analysis software TEMPLO and VICON MOTUS, CONTEMPLAS offers the possibility to do professional analysis in different fields of applications and integrate other systems, such as EMG, pressure and force measurement.

The objective of DIERS is to offer the market a comprehensive biomechanical product portfolio for a holistic analysis of the human body.

In our product development, value is placed on interdisciplinary use by various profession groups such as orthopaedists, orthopaedic technicians, physical therapists, dentists, orthodontists, sports medicine specialists etc.

Core expertise is not only the measurement of the spine in movement.

DIERS has meanwhile become a worldwide market leader in the field of optical 3D / 4D postural and motion analysis from head to toe.

Fior & Gentz develops and distributes products for the orthotic field of orthopaedic technology. The company’s main focus is on system joints for the production of orthoses and on therapeutic shoes.

The customers of Fior & Gentz are orthopaedic workshops, medical supply stores and orthopaedic shoemakers. The products are only sold via specialised traders who adapt them to the patient; this is required by the high quality standard. The quality standard has been controlled and certified by an independent certification organisation according to the international standards ISO 9001 and ISO 13485.

Since 2011, the company is based on its own, new premises in Lüneburg uniting all departments under one roof. The technology centre with work space and patient lounge is modernly equipped so that workshops for customers can take place there.

The company is not only dedicated to technology, but also to science. With orthotic treatment concepts for patients with apoplexy or cerebral palsy, the company relies on communication with and within the entire interdisciplinary team consisting of physicians, physiotherapists, patients and their relatives.

Gait Analysis – Physical Activity Monitoring – Inertial Sensors

Gait Up offers a simple and accurate tool to measure and analyze human locomotion. This innovative solution is the Physilog® wearable sensor and its dedicated algorithm developed through collaborations between research and clinics.

Gait Up is a must-have for institutions requiring routinely easy and valid spatio-temporal gait performance parameters! Gait Up also provides a Physical Activity monitor with exclusive parameters, and offers its expertise to your custom project.

Born in Research – Made in Switzerland – Used in Clinics

Innowalk Pro is a unique, motorized medical device for clinical practice. Innowalk Pro gives patients a fantastic opportunity to experience assisted, guided, and repetitive movement – in an upright weight-bearing position. Using Innowalk Pro does not require an independent ability to stand or walk.

Innowalk is a unique, motorized medical device. Innowalk gives disabled people a fantastic opportunity to experience assisted, guided, and repetitive movement — in an upright weight-bearing position.

NF-Walker is a fantastic and dynamic medical device that enables disabled people to stand and walk. The user gets a unique opportunity to explore their surroundings while keeping both hands free.

Incorporated in Bolzano in 1989, Microgate started out operating primarily in the development of sports timing solutions, creating the world’s first radio-based chronometer. Microgate has been closely involved in projects in the astronomy field, developing ‘adaptive optics’ technology, which is currently employed in the world’s most powerful observational telescopes for the correction of images of the universe. Microgate today operates through four divisions: Timing, Training & Sport, Medical Rehab, and Engineering. Microgate exports its products to 35 countries across the world and collaborates actively with research centres, universities and sports clubs of international standing. In 2010 the company opened a US branch in Mahopac NY to assist and promote the distribution of Microgate products on the American market.

Thanks to the exceptionally high quality and reliability of its systems, Microgate currently occupies a position of leadership in all its areas of operations. The key products in the sports-medical field are devoted to motion analysis, sports performance analysis, and training (Optogait, Gyko, Optojump Next and the range of devices in the Witty family of indicator systems).
Motekforce Link provides innovative products for treatment of movement disorders in clinical rehabilitation. Our high-quality rehabilitation products with real-time feedback use augmented/virtual reality techniques combined with motion platforms, instrumented treadmills and motion-capture to study/treat balance and locomotion disorders. By combining these technologies our products are able to study and train (impaired) human movement. The D-Flow software integrates all system components and makes the synchronized data streams available in real-time to develop and run custom build applications tailored to your research protocols.

All these technologies were already available in our CAREN and GRAIL systems and can now be purchased separately in our modular M-Gait system. This allows you to build a gait lab that perfectly suits your research requirements. Start your lab with an instrumented dual-belt treadmill and the D-Flow software and extend the system with various system enhancements to increase the clinical and research possibilities. You can integrate 3D motion capture, fast pitch and/or sway of the treadmill, EMG, body weight support and/or an interactive Virtual Reality system.

myon myon is a Swiss company that, since the foundation in 2009, has established a worldwide reputation for quality electromyography systems (EMG) that are very easy to use and still perfectly fulfill the high measurement standards required by international scientific societies.

These are the key benefits of the myon m320 and m320S EMG and Sensor systems:
- Wireless: easy and fast to apply sensors and electrodes
- Easy to use: it either charges or measures and there are no buttons to press
- Fixed, low latency: measure in real time, synchronous with other systems
- Small, lightweight sensors: comfortable for the patient
- 10 hours of battery life: measure all day, recharge at night
- Not just EMG: we also offer wireless accelerometers, goniometers and foot switches
- Powerful software: do your recording and analysis in just a few mouse clicks
- Superb support: we’re there for you if you have questions or concerns

Noraxon continues its 25 year tradition of manufacturing excellence for Evidence-Based Biomechanics. We take pride in being recognized in the market place as the Gold Standard across the biomechanical assessment spectrum. Our patent-protected and FDA approved technology includes EMG, video capture, pressure/force and 3D motion analysis. Combining this hardware with the most powerful data acquisition and analysis software ever specifically developed for life sciences, MR3 (myoResearch 3), allows for straight-forward, synchronous and automated data collection. MR3 is built on a modular platform that offers users the flexibility to work with a single technology or a fully equipped biomechanical technology suite. Synchronization is automated across all data recording and processing of EMG, video, 3D (IMU) kinematics, multiple pressure and gait systems, and any other (3rd party) device that streams an analog signal. Noraxon’s solutions improve the research and diagnostics workflow by giving users access to real time data, accurate biofeedback, and extensive automated reporting and analysis capabilities all while significantly reducing set up and processing time.

novel.de novel is the specialist in the development of load distribution measurement systems. With more than 30 years of experience, our scientists and engineers set the benchmark for the accuracy and reliability of load distribution measurement. Our team plays a leading role in expanding the systems’ application area.

novel has developed various different measurement systems, which include the emed® pedography platform providing a barefoot measurement for foot diagnostics and the analysis of foot functions, the pedar® in-shoe measuring system for the evaluation of local forces between foot and shoe, and the pliance® systems that identify the load distribution on soft surfaces and 3-D areas. novel’s latest innovation is the pedoped® load monitoring device which accurately measures the normal plantar force detected inside the shoe during all static and dynamic activities.

Today, well-known major companies and prominent research institutions in medicine, biomechanics and industry all around the world rely on novel’s technology. We are your partner for highly innovative spine and orthopedic technology.

Orthovative is specialized in the sale of innovative spine and orthopedic technology, focused on spine surgery and orthopedics. In the sector of paediatrics we supply special designed implants and instruments for infants and kids. We have close partnerships with leading companies and offer our customers:
- Individual service
- Absolutely reliable support
- Interesting training programs

Orthovative was founded in 2011 and is based in Gmund in Southern Germany. We position ourselves as interface between the international and the German market.

prophysics, established in 1996, is a Switzerland-based company offering high-quality measurement equipment for the 2D and 3D analysis of motion as well as Force Plates, EMG and other biophysical signals. Users are found in Life Science, but also in Engineering and Animation. Working with industry leading companies such as Vicon, AMTI, Contemplas and Zebris, proPhysics has established a strong user base and a reputation for excellent end-user support in the German-speaking Europe.

QUALISYS is a leading, global provider of products & services based on optical motion capture. The core technology of Qualisys products has been developed in Sweden since 1989.
Ultraflex®, exclusively represented in Europe by Dirame Ortho, is worldwide market leader of dynamic components which are integrated in custom-made orthoses. These orthoses address patients who are suffering from range of motion deficits associated or not with spasticity.

We can distinguish 2 types of components:

1. Therapeutic components for postural upper- and lower limbs orthoses to improve or maintain the patients’ potential in terms of ROM and spasticity. 20 years experience makes the new Ultraflex® ONE™ the most complete joint to meet the requirements of the actual treatments, such as botulinum toxin. This hybrid joint offers unlimited, adjustable dynamic and static correction.

2. Functional components for ankle and knee orthoses for daily use. Their goal is to correctly position the limb within the patients’ potential in order to improve their gait cycle. These ADR™ (Adjustable Dynamic Response™) components allow the practitioner to precisely adjust the resistance in dorsi- and plantar flexion in patients with extension and flexion gait deficits. This way all natural rockers are respected and patients’ muscles are used correctly on the right moment.

We are pleased to welcome you at our booth no. 3, ground level.

Velamed has been founded in 2005 with the goal to introduce technically innovative medical products of leading international manufacturers of biomechanics and sensor systems to the European market. The current product line includes market leading developments of the main areas of biomechanics. Also Velamed has specialized in professional planning and realization of biomechanical laboratories. In various public-funded research and product related development projects Velamed acts as industry partner for universities.

Vicon delivers highly accurate 3D motion capture systems for use in gait analysis. Nearly 400 clinical gait labs world-wide use Vicon technology. Its flagship cameras Vicon Vantage, offers the highest resolution, frame rates and accuracy available, allowing detailed motion capture in almost any environment. Bonita is Vicon’s next generation camera, combining size, power, and price performance into one amazing solution.

Vicon was established in Oxford, UK, in 1984 and is now a subsidiary of the Oxford Metrics Group Plc. Some of Vicon’s global clients include: University of Vienna; Nuffield Orthopaedic Centre; University of Brussels; Northumbria University; Guy’s and St Thomas’ Hospital; Katholieke Universiteit Leuven; Amsterdam Medical Centre; and Humboldt Universität zu Berlin. For more information please visit www.vicon.com.

zebris Medical GmbH looks back on a history of more than 25 years in the manufacturing of professional measuring systems for 3D movement analysis and force distribution measurement.

The innovative systems for measuring human motion sequences find application in medical practices, clinics, scientific institutions as well as in orthopedic and neurologic rehabilitation facilities. From the location in Isny, zebris acts on an international level and is represented by distributors in 34 countries.
Exhibition plans

Neue Universität Heidelberg

Ground floor

1st floor

2nd floor

Exhibitors

1. AKU Societies
2. Made for Movement GmbH
3. Ultraflex by DIRAME Ortho
4. Motekforce
5. DIERS International GmbH
6. ORTHOVATIVE GmbH
7. zebris Medical GmbH
8. myon AG
9. Vicon Motion Systems
 Prophysics
10. CONTEMPLAS GmbH
11. novel gmbh
12. Cometa Systems
13. CODAMOTION Charnwood Dynamics Ltd.
14. Gait up
15. FIOR & GENTZ GmbH
16. MICROGATE Srl
17. Noraxon Inc.
 Qualisys AB
18. Velamed GmbH
 Bertec Inc.
Accommodation

To your convenience we have contacted hotels within Heidelberg that are suitable to our congress visitors. Please use the following link to receive the special offers for the selected hotels: www.esmac2015.com/accommodation

There is also the possibility of low budget accommodations such as youth hostels. For booking a youth hostel please follow the link: www.jugendherberge-heidelberg.de

Travel Information

Arriving by road

Heidelberg can be reached from Northern and Southern Germany via the A5 expressway. After reaching the Heidelberger Kreuz, it is recommended to take the A656 in the direction of Heidelberg.

Drivers from Eastern Germany are advised to take the A6 expressway in the direction of Frankfurt. After reaching the Heidelberger Kreuz, it is recommended to take the A656 in the direction of Heidelberg.

Coming from Western Germany via the A6 expressway it is recommended to leave the A6 at the Mannheimer Kreuz in the direction of Heidelberg.

Arriving by air

Heidelberg does not have its own airport, but the city is easy to reach from Frankfurt/Main airport (approx. 60 minutes by car or train) and Stuttgart airport (approx. 70-90 minutes by car or train).

Diverse airport shuttles depart every 30–90 minutes from Frankfurt airport to Heidelberg. One way ticket costs are EUR 24.00 each and EUR 44.00 for a return ticket. The tickets can be purchased directly at the shuttle service. The route between Heidelberg and Frankfurt airport is operated by the cooperation partner Busworld International of Lufthansa. You will reach your destination quickly and conveniently in comfortable 22- or 8-seater vehicles.

Please find more information via: http://www.lufthansa.com/uk/en/Airport-Shuttle-Heidelberg

There is the option to take the train within the Frankfurt airport terminal to ride to Frankfurt main station ‘Hauptbahnhof’ and then change trains in Mannheim main station “Hauptbahnhof”. The local tram S1 will go the entire distance to the Heidelberg University Department of Orthopaedics, station of exit “Schlierbach, Orthopädische Klinik”. Duration approx. 2 hours.

Organise your flight with special offers by Lufthansa
(more information at www.esmac2015.com/rail-fly-offers/)

Arriving by train

Heidelberg’s main train station “Hauptbahnhof” is located in the city centre and provides an ICE (InterCityExpress) and IC/EC (InterCity/EuroCity) connection to regional, as well as major cities. Intercongress offers a customized flat-rate price for congress participants. The ticket facilitates individual transport to and from the venue.

Organise your train journey with special offers by Deutsche Bahn
(more information at www.esmac2015.com/rail-fly-offers/)
General Information

Transportation within the city
The public transportation in Heidelberg is used as the main form of transportation within the city. The Bismarckplatz is the center hub leading to diverse directions of Heidelberg as well as to the congress venue. Tickets can be purchased at ticket machines or at the main train station. More information is available at www.deutschebahn.com and www.vrn.de.

Additional source of information

City Information

Highlights in the city of Heidelberg
The beautiful town offers various tourist attractions which are definitely worth visiting for the young and the young at heart.

- Heidelberg castle
- Alte Brücke
- Historic churches and examples of great architecture
- Zoo

Guided Tours
Learn all about Heidelberg either on foot, by bus or even with a Segway. The tours have special focuses or themes and provide valuable information and entertainment:

- Historic centre of Heidelberg
- Bus tours including a castle visit
- Heidelberg University
- Culinary Heidelberg
- Segway Tour

Several boat tours
Discover the beautiful city of Heidelberg from the water and enjoy the charming "Neckartal" on board the vessels "Weisse Flotte", the solar ship "Neckarsonne" or the "Neckarfahrt." and enjoy the charming "Neckartal" on board the vessels "Weisse Flotte", the solar ship "Neckarsonne" or the "Neckarfahrt.

For further information and bookings, please feel free to visit the website of the tourism agency: www.heidelberg-marketing.com

Faculty

Afschrift, Maarten
Human Movement Biomechanics Research Group, Ku Leuven, 3001 Leuven, Belgium

Agopyan, Hovannes
CDS Rossetti pep06, 06000 Nice, France

Akalan, N. Ekin, Assistant Professor
Istanbul University, Faculty of Health Science, 34738 Istanbul, Turkey

Altenburg, Björn
Otto Bock HealthCare GmbH, 37115 Duderstadt, Germany

Alvela, Mari
Haapsalu Neurological Rehabilitation Centre, Centre of Excellence in Health Promotion and Rehabilitation, 90502 Haapsalu, Estonia

Anbarian, Mehrdad, PhD
Bu Ali Sina University, 651597513 Hamedan, Iran

Antunes, Ana, MSc
School of Health Care, Polytechnic Institute of Setubal, 2610-152 Lisboa, Portugal

Apti, Adnan, MSc
Istanbul University, Physiotherapy and Rehabilitation, 34740 Istanbul, Turkey

Arulampalam, Jeyan
The University of New South Wales, Graduate School of Biomedical Engineering, 2033 Sydney, Australia

Assi, Ayman
Faculty of Medicine, University of Saint-Joseph, Laboratory of Biomechanics and Medical Imaging, 17-5208 Beirut, Lebanon

Attias, Michael, MSc
Hospital University of Geneva, Geneva University, 1205 Genève, Switzerland

Ayidl, Sebahat, MD
Baltalimani Bone Disease Training and Research Hospital, 34470 Istanbul, Turkey

Bakouny, Ziad
Faculty of Medicine, University of Saint-Joseph, 17-5208 Beirut, Lebanon

Ballaz, Laurent, Professor
Research Center, Sainte-Justine University Hospital, Department of Kinanthropology, UQAM, H3T1C4 Montreal, Canada

Bar-On, Lynn, PhD
KU Leuven, Clinical Motion Analysis Laboratory, 3212 Pellenberg, Belgium

Barton, Gabor, Dr.
Liverpool John Moores University, Research Institute for Sport and Exercise Sciences, L3J3AF Liverpool, United Kingdom

Barton, Asa, PhD
Karolinska Institutet, Women’s and Children’s Health, 17176, Stockholm, Sweden

Beng, Kubilay, MD
Baltalimani Bone Disease Training and Research Hospital, 34470 Istanbul, Turkey

Bisi, Maria Cristina, PhD
University of Bologna, Department of Electrical, Electronic and Information Engineer, 40126 Bologna, Italy

Böhml, Harald, Dr. rer. nat.
Orthopädische Kinderklinik, Ganglabor, 83229 Aschau, Germany

Bonikowski, Marcin, MD, PhD
Mazovian Centre of Neuropsychiatry, Rehabilitation Department, 05-462 Zągorze, Poland

Boulay, Christophe, Dr.
13710 Fuveau, France

Bracht-Schweizer, Katrin, Dr.
University of Basel Children's Hospital, Laboratory of Movement Analysis, 4031 Basel, Switzerland

Brammigan, Colm, MSc
The Royal College of Surgeons in Ireland, Dublin 2, Dublin, Ireland

Castellote, Juan Manuel
Carlos III Institute of Health, 28029 Madrid, Spain

Cenni, Francesco, M.Eng.
3001 Leuven, Belgium

Claas, Elisabeth
Universität Salzburg, DSHS Köln, 5400 Hallein-Riff, Austria

Darras, Nikolaos
ELEPAP, Rehabilitation for The Disabled, 11634 Athens, Greece

Dawson, Darren
Cork Institute of Technology, Mechanical, Biomedical & Manufacturing Engineering, IRL, Cork, Ireland

Delp, Scott, Professor
Stanford Scholl of Medicine, Li Ka Shing Building, CA 94305-5 Stanford, United States of America
Faculty

Desailly, Eric, PhD
Unité d’Analyse du Mouvement, Fondation Ellen Poidatz, 77310 Saint Fargeau-Ponthierry, France

Dijkstra, Erik, MSc
KTH, Royal Institute of Technology, Mechanics, 10044 Stockholm, Sweden

Döderlein, Leonhard, Dr. med.
Behandlungszentrum Aschau GmbH, Kinderorthopädie, 83229 Aschau, Germany

Duffy, Kim, MSc
University of Essex, CO4 3SQ Colchester, United Kingdom

Dussa, Chakravarthy
Orthopädische Kinderklinik, 82239 Aschau, Germany

Egan, Sonja
University College Dublin, Health Science Centre, D4 Dublin, Ireland

Eriksson, Marie
Karolinska University Hospital, Motor control lab, 17176 Stockholm, Sweden

Eriksson Naili, Josefine, MSc
Karolinska Institutet, Department of Women’s and Children’s health, 17176 Stockholm, Sweden

Etemadi, Niloofar
University of Social Welfare and Rehabilitation Sciences, 96874Tehran, Iran

Farrag, Ahmed, Dr.
Faculty of Physical Therapy, Cairo University, 12612 Cairo, Egypt

Fry, Nicola, Dr.
WD65/PY Borehamwood, United Kingdom

Fulenkamp, Adam, PhD
Bowling Green State University, C199 Eppley Complex, 43403 Bowling Green, United States of America

Galarraga C.
Omar A. Fondation Ellen Poidatz, IBISC, Université d’Evry Val d’Essonne, 77310 St. Fargeau-Ponthierry, France

Gazzellini, Simone
Bambino Gesù Children’s Hospital 00050 Passoscofo Fiumicino (Rome), Italy

Gomez, Maria, MSc
Technical University of Madrid, Sport Sciences Faculty, 28040 Madrid, Spain

Goudriaan, Marije, MSc
KU Leuven, Department of Rehabilitation Sciences, 3212 Pellenberg, Belgium

Greco, Luana, PhD
Spaulding Neuromodulation Center, 02129 Boston, United States of America

Haberfehlner, Helga, MSc
MOVE Research Institute Amsterdam, VU University Amsterdam, 1081 BT Amsterdam, Netherlands

Hamacher, Dennis, M.Sc
Otto von Guericke University Magdeburg, Institute of Sport Science, 39104 Magdeburg, Germany

Hansen, Lisbeth, MSc
Copenhagen University Hospital at Hvidovre, Department of Orthopedics, 2650 Hvidovre, Denmark

Hartmann, Kathrin, M.Sc
Swiss Paraplegic Centre Nottwil, 6207 Nottwil, Switzerland

Heitzmann, Daniel, Dipl.-Ing.
Orthopädische Universitätsklinik Heidelberg, Orthopädie, 69118 Heidelberg, Germany

Hösi, Matthias, M.Sc
Orthopaedic Hospital for Children Aschau, 83209 Aschau, Germany

Houdijk, Han
1081 BT Amsterdam, Netherlands

Huaenerts, Catherine
University Hospital Leuven, Clinical motion analysis laboratory, 3212 Pellenberg, Belgium

Hwang, Sun Hee, PhD
Samsung Medical Center, Sungkyunkwan University, 135-710 Seoul, South Korea (ROK)

Hwang, Na Young, MD
Samsung Medical Center, Sungkyunkwan University, 135-710 Seoul, South Korea (ROK)

Kark, Lauren, MD
University of New South Wales, Grad School of Biomed Eng, 2052 UNSW Sydney, Australia

Kerkum, Yvette
Rehabilitation Medicine, VU University Medical Center, MOVE Research Institute Amsterdam, 1081 HV Amsterdam, Netherlands

Kiernan, Damien
Central Remedial Clinic, Gait Laboratory, D3 Dublin, Ireland

Kim, Heungyoul, PhD
Nanzan University, Department of Policy Studies, 489-0863 Seto, Japan

Kim, Na Young
120752 Seoul, South Korea (ROK)

Kloz, Matthias, Dr.
Universitätsklinikum Heidelberg, Abteilung für Orthopädie und Unfallchirurgie, 69118 Heidelberg, Germany

Kranzl, Andreas
Orthopädisches Spital Speising, Labor für Gang- und Bewegungsanalyse, 1130 Wien, Austria

Krautwurst, Britta K.
Universitätsklinikum Heidelberg, Klinik für Orthopädie und Unfallchirurgie, 69118 Heidelberg, Germany

Kreuzpointner, Florian, Dr.
Department of Biomechanics in Sports, Technische Universität München, 80992 München, Germany

Kubisova, Michaela
Palacky university, KPK, 77111 Olomouc, Czech Republic

Lamoth, Claudine, PhD
University of Groningen, University Medical Centre Groningen, 9713 AV Groningen, Netherlands

Lerma Lara Sergio, Professor
CSEU La Salle-UM, Hospital Infantil Universitario Niño Jesús, 28023 Madrid, Spain

Loma-Ossorio Garcia, Sergio, Professor
Hospital Infantil Universitario Niño Jesús, 28023 Madrid, Spain

Löfö, Elin, MSc
Karolinska Institutet, Women’s and Children’s health, 17176 Stockholm, Sweden

Lucarelli, Paolo, Professor
Universidade Noe de Julho, 02020-000 Sao Paulo, Brazil

Lumeau, Marie
29200 Brest, France

Mahaffey, Ryan, Dr.
University of East London, E15 4LZ London, United Kingdom

Mahon, Judy
Centran Remedial Clinic, Physiotherapy Department, Dublin 3, Dublin, Ireland

Manousaki, Evgenia, MD
Skane University Hospital, Department of Orthopedics 22185 Lund, Sweden

Markström, Jonas, MSc
Umeå University, Department of Community Medicine and Rehabilitation, 901 87 Umeå, Sweden

Martins, Rodrigo
Neuromechanics of Human Movement Research Group, University of Lisbon, 1499-002 Lisboa, Portugal

Massaad, Abir
Faculty of Medicine, University of Saint-Joseph, SESOBEL, Gait lab, 17-5208 Beirut, Lebanon

Mattern, Sarah
University Hospital Heidelberg, Clinic for Orthopedic and Trauma Surgery, 69118 Heidelberg, Germany

Metalife, Andrew
School of Engineering, Cardiff University, CF24 3AA Cardiff, United Kingdom

Mayes, Pieter, PhD
UGent, Rehabilitation Sciences and Physial Therapy, 9000 Gent, Belgium

Millar, Lindsay J.
University of Strathclyde, G8 oNW Glasgow, United Kingdom

Miller, Freeman, MD
AI duPont Hospital from Children, Orthopedics, 19807 Wilmington, United States of America

Mombaur, Katja, Prof. Dr.
Ruprecht-Karls-Universität Heidelberg, Interdisziplinäres Zentrum für Wissenschaftliches Rechnen, 69115 Heidelberg, Germany

Nieuwenhuys, Angela, MSc
KU Leuven, Department of Rehabilitation Sciences and Physiotherapy, 3212 Pellenberg, Belgium

Niklasch, Mirjam, Dr. med.
Universitätsklinik Heidelberg, Klinik für Orthopädie und Unfallchirurgie, 69118 Heidelberg, Germany
Niklaus, Laura
Technische Universität Chemnitz, 09126 Chemnitz, Germany

Orechovska, Karolina
Palacky University, 77111 Olomouc, Czech Republic

Patiakas, Dimitrios
Aristotle University of Thessaloniki, Dept. of Physical Education and Sport, 62110 Serres, Greece

Pavare, Zane, Dr.
National Rehabilitation Centre Vaivari, LV-2008 Jurmala, Latvia

Petrarca, Maurizio, PhD
Bambino Gesù Children's Hospital, 00150 Passoscco Fiumicino (Rome), Italy

Pianta, Lucia, Dr.
Istituto Auxologico Italiano, 28824 Oggebbio, Italy

Piening, M.
VU University Medical Center, Department of Rehabilitation Medicine, 1007 MB Amsterdam, Netherlands

Pimenta dos Santos, Alexandre
Unité d’Analyse du Mouvement, Fondation Ellen Poidatz, Sorbonne Universités, UPMC Univ Paris 06, UMR 7122, ISIR, 77330 Saint Fargeau-Ponthierry, France

Pinzone, Ornella
University of Salerno, M6 6PU Salerno, United Kingdom

Pippich, Katharina
Department of hand and plastic surgery, LMU Munich, 80336 Munich, Germany

Pouliot-Laforte, Annie, MSc
UHC Sainte-Justine, Marie Enfant Rehabilitation Center, HSTCo Montreal, Canada

Putz, Cornelia, Dr.
Orthopedic University Hospital Heidelberg, Center for Orthopedics and Trauma Surgery, 69118 Heidelberg, Germany

Rabuffetti, Marco, Dr.
Fondazione Don Carlo Gnocchi, 20121 Milano, Italy

Razeghi, Mohsen, Dr.
Center for Human Motion Sciences, School of Rehabilitation Sciences, 794773669 Shiraz, Iran

Rettig, Oliver, Dr. rer. nat.
Orthopädische Universitätsklinik Heidelberg, Orthopädie, 69118 Heidelberg, Germany

Richards, Rosie, MSc
VUmc, VU, 1081HV, Amsterdam, Netherlands

Rieken, Jan Nikolas, Dr.
Klinik für Unfall-, Hand- und Wirbelsäulenchirurgie, Bewegungsanalyselabor, 83024 Rosenheim, Germany

Ringheim, Inge, MSc
3292 Stavenn, Norway

Romero-Moraleda, Blanca, PhD
CSEU La Salle-UAM, Health Sciences Faculty. Camilo José Cela University, 28023 Madrid, Spain

Rozumalski, Adam, MSc
Gillette Children's Specialty Healthcare, University of Minnesota, 55101 St. Paul, United States of America

Sabbagh, Daniel, Ing.
FIOR & GENTZ, Scientific Editorial, 21337 Lüneburg, Germany

Sarcher, Aurelie
Motion Analysis Laboratory, University Hospital of Nantes, 44093 Nantes, France

Schack, Thomas, Prof. Dr. phil.
Bielefeld University, Neurocognition and Action – Biomechanics Research Group, Bielefeld, Germany

Scheps, Lennart, PhD
Department of Orthopedics, Katholieke Universiteit Leuven, 3022 Pellenberg, Belgium

Schless, Simon-Henri, MSc
UZ Pellenberg, KU Leuven, 3212 Pellenberg, Belgium

Schmalz, Thomas, Dr.
Otto Bock Orthopädie-Technik, Biomechaniklabor, 37075 Göttingen, Germany

Schwarz, Michael, PhD
Gillette Children's Specialty Healthcare, Center for Gait & Motion Analysis, 55101 St. Paul, United States of America

Sees, Julieanne, MD
Nemours Du Pont Hospital, 19803 Wilmington, United States of America

Seidel, David H., MSc
70372 Stuttgart, Germany

Serhan, Mehmet, MD
Nemours AI duPont Hospital, 19803 Wilmington, United States of America

Sloot, Lizeth, MSc
VU University Medical Center Amsterdam, MOVE Research Amsterdam, 1018HZ Amsterdam, Netherlands

Steppins, Julie, Dr.
Oxford Gait Laboratory, Nuffield Orthopaedic Centre, OX3 9RG, Oxford United Kingdom

Stief, Felix, Dr.
Orthopaedic University Hospital Friedrichsheim GmbH, Movement Analysis Lab, 60528 Frankfurt, Germany

Stout, Jean, MSc
Gillette Children's Specialty Healthcare, Center for Gait & Motion Analysis, 55101 St. Paul, United States of America

Strong, Andrew, B.Sc.
Umeå University, Physiotherapy, 90187 Umeå, Sweden

Suckling, Luke, Dr.
University of East London, School of Health Sport and Bioscience, E5 4LZ, London, United Kingdom

Svoboda, Zdenek
Faculty of Physical Culture, Palacký, University Olomouc, 771 11 Olomouc, Czech Republic

Szychewska, Malgorzata
The Children's Memorial Health Institute, 04-730 Warsaw, Poland

Syrek, Magdalena
Carolina Medical Center, 22757 Warszawa, Poland

Tabard, Anne, Dr.
University Hospital of Geneva, University of Geneva, 1205 Geneva, Switzerland

Tatay Diaz, Angela, MD
Hospital Universitario Virgen del Rocio, 41013 Sevilla, Spain

Totori, Nobuaki
Ritsumeikan University, Graduate School of Sport and Health Science, 525-8577 Kusatsu, Shiga, Japan

van Beeten, Barbara
Rehabilitation Centre Heliomare, 1949EC Wijk aan Zee, Netherlands

van de Bunt, Fabian, MD
VU university medical center, Orthopedics, 1081HV Amsterdam, Netherlands

van den Noort, Josien, PhD
VU medical center, MOVE research institute, 1081 HZ Amsterdam, Netherlands

van der Kogt, Marjolein, PhD
VU University Medical Center, MOVE research institute amsterdam, 1007MB Amsterdam, Netherlands

van Hal, Esar, MSc
University of Groningen, UMCG, 9713AV Groningen, Netherlands

Vasco, Gessica, MD, PhD
Bambino Gesù Children's Hospital, 00150 Passoscco Fiumicino (Rome), Italy

Wachowsky, Michael, Dr. med.
Klinikum Stuttgart, Olgahospital, 70174 Stuttgart, Germany

Westhoff, Bettina, Prof.
Universitätsklinikum Düsseldorf, Orthopaedic Department, 40225 Düsseldorf, Germany

Widhalm, Klaus
FHM Campus Wien, Physiotherapie, 1100 Vienna, Austria

Wojciechowski, Elizabeth, MSc
The Paediatric Gait Analysis of NSW, The Children's Hospital at Westmead, 2145 Westmead, Australia

Wright, Andrew, MD
North West Deanery, M3 3BN Manchester, United Kingdom

Wyatt, Marilyn
Naval Medical Center San Diego, 92134 San Diego, United States of America

Yadav, Priti, PhD
KTH Royal Institute of Technology, 1004 Stockholm, Sweden

Zietz, Doerte
Hochschule für Gesundheit, Physiotherapie, 44801 Bochum, Germany
Welcome to the 26th Annual Meeting of ESMAC

6 – 9 September 2017
Trondheim, Norway
Pre-Congress | 4 - 6 September

Scientific chairs:
Siri Merete Brændvik, Karin Roeleveld, Beatrix Vereijken
siri.merete.brandvik@ntnu.no

Conference venue:
Clarion Hotel & Congress Trondheim
WWW.CLARIONTRONDHEIM.NO

NTNU – Trondheim
Norwegian University of Science and Technology

European Society for Movement Analysis in Adults and Children