New monoclonal antibody against Neurofibromin

- Monoclonal antibody binding to the C-terminus of neurofibromin
- Facilitate sarcoma research and diagnostics
- Western-Blot analysis
- Immunocytochemistry diagnostic

The Technology

A cDNA fragment encoding for the last 281 amino acids of neurofibromin (transcript variant 1) was cloned into pQCH6 vector. The fragment was expressed in *E. coli* and the fusion protein was purified using a hexahistidine tag. One C57Bl6/N and one BALB/c mice were immunized with 20 μg of the fusion protein and boosted on days 12, 16, 20, 28, 96, and 104. Polyethylene glycol fusion of lymph node cells from C57Bl6/N with mouse myeloma SP2/0 cells was performed on day 105. Immunoreaction was enhanced with Freund’s adjuvant. The monoclonal antibody was raised according to the method described by Kohler and Milstein.

Background

Malignant peripheral nerve sheath tumors (MPNST) derive from the Schwann cell or perineurial cell lineage and occur either sporadically or in association with the tumor syndrome neurofibromatosis type 1 (NF1). MPNST often pose a diagnostic challenge due to their frequent lack of pathognomonic morphological or immuno-histochemical features. Mutations in the NF1 tumor suppressor gene are found in all NF1-associated and many sporadic MPNST. The presence of NF1 mutation may have the potential to differentiate MPNST from several morphologically similar neoplasms; however, mutation detection is hampered by the size of the gene and the lack of mutational hot spots. Here we describe a newly developed monoclonal antibody binding to the C-terminus of neurofibromin (clone NFC) which was selected for optimal performance in routinely processed formalin-fixed and paraffin-embedded tissue.

Commercial Opportunity

- Western-Blot detection
- Immunocytochemistry formalin-fixed and paraffin-embedded tissue.

Reference

Neurofibromin specific antibody differentiates malignant peripheral nerve sheath tumors (MPNST) from other spindle cell neoplasms Reuss et al Acta Neuropathol (2014) 127:565–572

Contact:

technology transfer heidelberg GmbH
Im Neuenheimer Feld 672
D-69120 Heidelberg
Germany
Email: tt-team@med.uni-heidelberg.de

Fig. 1 Mouse monoclonal NFC anti-neurofibromin antibody stains formalin-fixed and paraffin-embedded HcK293 cells (NF1+/+) (a) but not IN229 cells (NF1−/−) (b); original magnification ×100. In Western blots NFC produces a strong single band above 250 kDa in human NF1+/+ and mouse NF1+/− cells but not in −/− cells or NF1+/+ cells transfected with sirNA targeting neurofibromin (c)