Contingent Negative Variation (CNV) in migraine patients during childhood and adolescence: Lack of age-dependent development
S. Bender ${ }^{1}$, R. Oelkers ${ }^{1}$, U. Just ${ }^{1}$, U. Pfüller ${ }^{2}$, P. Parzer ${ }^{1}$, M. Weisbrod ${ }^{2}$, F. Resch ${ }^{1}$
${ }_{1}$ Department for Child and Adolescent Psychiatry, ${ }^{2}$ Psychiatric Department University of Heidelberg, Germany

Acknowledgements:
This work was supported by the Pain Research Programme of the Medical Facult University of Heidelberg (F207040, E1). The authors would like to thank Kerstin

Discussion

1. Like adults do, young MO children also show increased CNV amplitudes with respect to CO. Thus, differences in late and total CNV amplitude rather represent vulnerability than result from longterm chronification. As CNV represents focused attention and expectancy, its increased amplitude might reflect a disposition to suffer from migraine due to differences in attention and information processing.
2. Healthy children show increase in TCNV and ICNV amplitude with age. The rise in CNV amplitude in CO might reflect natural development of catecholaminergic systems. Migraine children fail to show this development maybe due to a ceiling effect. Maturation processes might be altered in migraine. Altered maturation may be the cause that some but not all patients continue to suffer from headaches during adulthood.

Conclusion

Childhood headache could result from a disposition to a cerebral "over-involvement" in information processing - and on the other hand alter itself again the development of the brain: Results give evidence for a disturbed cerebral maturation. Proper treatment could be the key to avoid sensitization and chronification.

References

Böcker KB, Timsit-Berthier M, Schoenen J, Brunia CH. Contingent Negative Variation in Migraine. Headache $1990 ;$; 30:604-9.
Kropp P, Kirbach U, Dettefsen JO, Siniatchkin M, Gerber WD, Stephani U. Slow cortical potentials in migraine: a comparison of adults and children. Cephalalgia 3. Kropp P, Siniatchkin M, Stephani U, Gerber WD. Migraine evidence for a disturbance of cerebral maturation in man? Neuroscience Letters 1999; 276:181-4.
4. Besken E, Pothmann R, Sartory G. Contingent negative variation in childhood . Besken E, Pothmann R. Sartory G. Contingent negative variation in childhood

Contingent Negative Variation (CNV) in migraine patients during childhood and adolescence: Lack of age-dependent development

S. Bender ${ }^{1}$, R. Oelkers ${ }^{1}$, U. Just ${ }^{1}$, U. Pfüller ${ }^{2}$, P. Parzer ${ }^{1}$, M. Weisbrod ${ }^{2}$, F. Resch

Corresponding author e-mail: stephan_bender@med.uni-heidelberg.de
${ }^{1}$ Department for Child and Adolescent Psychiatry, ${ }^{2}$ Psychiatric Department
University of Heidelberg, Germany
Introduction
Why is migraine relevant for child and Why is migraine re
The prevalence of headache among school children ranges from 5 to 25%. In psychiatric patients it is ranges from 5 to 25%. In psychiatric patients it is would be helpful to understand the interactions between pain and the cognitive system.
voked potentials reflect cerebral hyperexcitability in migraine: The amplitude of the contingent negative migraine: The amplitude of the contingent negative variation (CNV) - the negative shift between a requires a response - is increased in adult migraineurs with respect to healthy controls during the headache free interval. This increase is well established, yet it is unclear if it is caused mainly by he late (ICNV, Böcker et al 1990) or the early component (iCNV, Kropp et al 1999).
Though there are first studies concerning children Besken et al 1993, Kropp et al 1999), ageependent development of CNV in children with migraine has not been investigated yet.
hildren with migraine without aura (MO) differ from healthy controls (CO) in CNV parameters (iCNV, CNV, total CNV tCNV) during the headache free interval. Special emphasis was put on the question if age-dependent development is altered in migraine.

	Amplitude [$\mu \mathrm{V}]$			age slope [$\mu \mathrm{V} / \mathrm{y}$]			
	CO	MO	p	CO	M0		diff.
	$\mathrm{N}=71$	$\mathrm{N}=55$		coef. p	Coef.	p	p
iCNV	-3.83 ± 1.04	-5.12 ± 1.04	0.209	$-0.630 .040$			0.305
ICNV	-6.74 ± 0.73	-8.89 ± 0.83	0.001	-0.90 0.000	0.07		0.006
tCNV	$-4.55 \pm 0.50-6$	-6.32 ± 0.58	0.010	-0.45 0.004			0.049

Table 1. Mean amplitudes and age slopes

 Mean amplitude ($+/$ - standard error of the mean) and age slope (coefficient and significancy level of the healthy controls (CO) and children with migraine without aura (MO).
Methods

61 children suffering from migraine without aura (MO - IHS classification code 1.1, mean age $10.3+/-2.89$ (SD) years, 35 male / 26 female) and 76 healthy controls (CO $11.1+/-$ 3.32 years, $43 \mathrm{~m} / 33 \mathrm{f}$) were included into the study following these criteria: MO disease duration > 1 year and at least 3 excluded from analysis because of headache attacks after the recording. We recorded 20 CNV trials using a warning stimulus S1,
1000 Hz , duration 50 ms , and an imperative stimulus S 2 , $2000 \mathrm{~Hz}, 50 \mathrm{~ms}$. The interstimulus interval (ISI) was 3 s , the intertrial interval (ITI) varied randomly from 10 to 15 s . Linked mastoids served as reference channels and recordings 1 s before S1 as baseline. 6 subjects of 132 had to be excluded because they did not respond properly or produced unremovable artefacts. The amplitude of CNV , tCNV and CNV was calculated as the mean amplitude of the intervals according to Bocker 1990. Multivariate regression analysis diagnosis, age, sex and the interaction between diagnosis and age (to detect group differences in age-dependent development).

Figure 1. Age development of ICNV
Scatter plots showing age-dependent development and variability of iCNV, ICNV and TCNV in CO (healthy controls) and MO (children with

Group differences in amplitude: Children with MO showed significant higher amplitudes of ICNV and tCNV than CO ($\mathrm{p}=$ 0.001 and 0.010 , table 1). These differences were particularly found at early age (see figure 1 and agedependency below). The early component (iCNV) showed more variability due to inhomogenous latency and a tendency to increase already at a younger age in controls, no significant differences were found between groups with age (CO p<0.001 and MO p<0.001). There were no significant differences between CO and MO children ($\mathrm{p}=$ 0.988).

Age-dependency: Linear regression showed significant age-dependency (table 1) of tCNV (age slope coef. $=-0.45$, $p=0.004$), ICNV (coef. $=-0.90, p<0.001$) and iCNV (coef. $=$ $0.63, \mathrm{p}=0.040$) for CO at Cz . MO children did not show this development: tCNV coef. $=0.04(p=0.83)$, ICNV coef. $=$ 0.07 ($p=0.79$) and iCNV coef $=-0.13$
p= age
groups for tCNV ($p<0.05$) and ICNV ($p<0.01$) but not for iCNV ($p=0.305$).

Discussion

