Development of the electroencephalographic response to transcranial magnetic stimulation durcing childhood: Evidence for immature giant inhibitory potentials

S. Bender*, K. Basseler*, I. Sebastian**, F. Resch*, T. Kammer***, R. Oelkers-Ax*, M. Weisbrod**

* Dept. for Child and Adolescent Psychiatry, ** Section for Experimental Psychopathology, Psychiatric Clinic, University of Heidelberg, Germany, ${ }^{* * *}$ Psychiatric Clinic, University of Ulm, Germany

Abstract

Introduction: The electroencephalographic (EEG) response to transcranial magnetic stimulation (TMS) has recently been established as a new direct parameter of motor cortex excitability [1-3]. Its N100 component has been suggested to reflect an inhibitory response because it was found to be diminished during movement execution [2].

Methods: We have employed TMS in a sample of 6-10-year-old healthy children in order to investigate the influences of cerebral maturation on the N100 component. We used a visual forewarned reaction time (contingent negative variation - CNV) task with 3s stimulus onset asynchrony to test the effect of response preparation and sensory attention on N100 amplitude by comparison of 20 stimulations at rest and 20 stimulations during late CNV (see stimulations during late CNV (see figure 1). TMS (9 cm circular coil) of the right motor cortex at rest and during late CNV were randomly intercalated in the recorded 60 trials.

\section*{Fig. 1: The ex} contingent negative setup of transcranial magnetic stimulation during the visual warning stimulus S 1 indicated that 3 s later a visual target stimulus S2 would occur which required a fast unilateral button press with the left hand. A schematic CNV-waveform is given, illustrating CNV components (early and late CNV as well as postimperative negative variation). The vertical dashed line indicates when $\mathrm{S2}$ is presented, negativity is up. Random transcranial magnetic stimulations (indicated by a flash) during the Random transcranial magnetic stimulations (indicated by a flash) during the intertrial interval were randomly interspersed with transcranial magnetic stimulations during late CNV (2.8 s post $\mathrm{S1}$). In trials with TMS during late CNV presentation of S2 was delayed until 500 ms after TMS in order to avoid interferences between the TMS-evoked potential and presentation of $S 2$.

Results:

Single pulse TMS of the motor cortex at rest evoked a large N100 amplitude of more than $100 \mu \mathrm{~V}$ in children at 105% motor threshold intensity at the site of its maximum (CP6 130.6 $+/-71.9 \mu \mathrm{~V}$), which could be well separated from TMS-induced artifacts where N100 was absent (see figure 2). TMS-evoked N100 could also not be explained by auditory evoked activity of the coil click, nor the somatosensory evoked potential of the scalp sensation or reafferent input from the muscle twitch in the left first dorsal interosseal muscle, judging from amplitudes, topography, ipsilateral lateralization (see figure 3) and independence from MEP-amplitudes [2,3]. TMS-evoked N100 amplitude correlated negatively with age and positively with absolute stimulation intensity (see figures 4 and 5). Adult control subjects did not present these giant N100 amplitudes even with suprathreshold TMS application (see figure 4). During late CNV, which is thought to involve a preactivation of the cortical structures necessary for a fast reaction to the imperative stimulus, N 100 amplitude was significantly reduced ($11.7+/-11.0 \mu \mathrm{~V}$; $\mathrm{t}=4.4$; $\mathrm{p}<0.001$; see figure 6). N100 showed a significant potentiation throughout the recordings even though intervals between successive TMS applications exceeded 5s.

Fig. 5:
Fcatterplot illustrating stimulus-
 of TMS evoked N100 at CP6. output values are given. Please note期 would have exceeded the maximum
stimulator output (intensity was set stimulator output (intensity was set to
100% maximum stimulator output), for all subjects the applied intensity was
adjusted to 105% of resting motor adjusted to 105% of resting motor
threshold (same reative but not threshold (same relative
absolute stimulus intensity).

Grand Average at CP6 ${ }^{\text {© }}$

Conclusions:
1.) N100 amplitude reduction during late CNV provides further evidence that TMS-evoked N100 is an inhibitory surface-negative potential which could be caused by inhibitory post-synaptic potentials from deeper cortical layers. Parallels between the inhibitory N100 after TMS (provoking a massive synchronous excitation) and the wave-component of the typical epileptic spike-wave complex (also representing massive synchronous neuronal action - spike - leading to an inhibitory response via the nucleus reticularis thalami-wave) are tentatively suggested because the long latency of TMS-evoked N100 makes a corticothalamo - cortical loop more likely than long-lasting inhibitory postsynaptic potentials within the cortex. TMS-evoked N100 could represent a model of epilepsy research which can be applied directly to humans, opening up a lot of new possibilities.
2.) Response preparation and attention modulates $\mathrm{N} 100, \mathrm{~N} 100$ therefore appears to be a more sensitive, independent parameter for cortical excitability than the compound motor evoked potential and seems suitable for the analysis of more complex cognitive processes.
3.) TMS-evoked N100 could be a valuable tool to test cortical integrity and / or inhibitiory function in children because children show a much larger N 100 amplitude at motor threshold intensity than adults.

References:

[1] Komssi S, Kahkonen S, Ilmoniemi RJ. The effect of stimulus intensity on brain responses evoked by transcranial magnetic stimulation. Hum Brain Mapp 2004; 21: 154-64.
[2] Nikulin VV, Kicic D, Kahkonen S, IImoniemi RJ. Modulation of electroencephalographic responses to transcranial magnetic stimulation: evidence for changes in cortical excitability related to movement. Eur J Neurosci 2003; 18: 1206-12.
[3] Paus T, Sipila PK, Strafella AP. Synchronization of neuronal activity in the human primary motor cortex by transcranial magnetic stimulation: an EEG study. J Neurophysiol 2001; 86: 1983-90.

Development of the electroencephalographic response to transcranial magnetic stimulation durcing childhood: Evidence for immature giant inhibitory potentials

S. Bender*, K. Basseler*, I. Sebastian**, F. Resch*, T. Kammer***, R. Oelkers-Ax*, M. Weisbrod**
* Dept. for Child and Adolescent Psychiatry, ** Section for Experimental Psychopathology, Psychiatric Clinic, University of Heidelberg, Germany, *** Psychiatric Clinic, University of Ulm, Germany

Corresponding author: stephan_bender@med.uni-heidelberg.de

Introduction:

Homepage: http://www.med.uni-heidelberg.de/psychia/psych/forschung/sektionen/exp_psych/index.html
The electroencephalographic (EEG) response to transcranial magnetic stimulation (TMS) has recently been established as a new direct parameter of motor cortex excitability [1-3]. Its N100 component has been suggested to reflect an inhibitory response because it was found to be diminished during movement execution [2].

Methods:

We have employed TMS in a sample of 6-10-year-old healthy children in order to investigate the influences of cerebral maturation on the N100 component. We used a visual forewarned reaction time (contingent negative variation - CNV) task with 3s stimulus onset asynchrony to test the effect of response preparation and sensory preparation and
attention on N100 amplitude by comparison of 20 by comparison of 20
stimulations at rest and 20 stimulations at rest and 20
stimulations during late CNV (see figure 1). TMS $\quad(9 \mathrm{~cm}$ (see figure 1). TMS $(9 \mathrm{~cm}$
circular coil) of the right motor cortex at rest and during late CNV were randomly intercalated in the recorded 60 trials.

Results:

Fig. 1:
The experimental setup of transcranial magnetic stimulation during the contingent negative variation task:
during the contingent negative variation task:
A visual warning stimulus S 1 indicated that 3 s later a visual target A visual warning stimulus S 1 indicated that 3 s later a visual target stimulus S2 would occur which required a fast unilateral button press with the left hand. A schematic CNV-waveform is given, illustrating CNV components (early and late CNV as well as postimperative negative variation). The vertical dashed line indicates when S2 is presented, negativity is up. Random transcranial magnetic stimulations (indicated by a flash) during the intertrial interval were randomly interspersed with transcranial magnetic stimulations during late CNV (2.8 s post S 1). In trials with TMS during late CNV presentation of S2 was delayed until 500 ms after TMS in order to avoid interferences between the TMS-evoked potential and presentation of S2.

Single pulse TMS of the motor cortex at rest evoked a large N100 amplitude of more than $100 \mu \mathrm{~V}$ in children at 105% motor threshold intensity at the site of its maximum (CP6 $130.6+/-71.9 \mu \mathrm{~V}$), which could be well separated from TMS-induced artifacts where N100 was absent (see figure 2). TMS-evoked N100 could also not be explained by auditory evoked activity of the coil click, nor the somatosensory evoked potential of the scalp sensation or reafferent input from the muscle twitch in the left first dorsal interosseal muscle, judging from amplitudes, topography, ipsilateral lateralization (see figure 3) and independence from MEP-amplitudes $[2,3]$. TMS-evoked N100 amplitude correlated negatively with age and positively with absolute stimulation intensity (see figures 4 and 5). Adult control subjects did not present these giant N100 amplitudes even with suprathreshold TMS application (see figure 4). During late CNV, which is thought to involve a preactivation of the cortical structures necessary for a fast reaction to the imperative stimulus, N 100 amplitude was significantly reduced ($11.7+/-11.0 \mu \mathrm{~V} ; \mathrm{t}=4.4 ; \mathrm{p}<0.001$; see figure 6). N100 showed a significant potentiation throughout the recordings even though intervals between successive TMS applications exceeded 5s.

Fig. 4:
Left: Scatterplots illustrating the pronounced agedependent decrease in TMS-evoked N100 amplitude at 105% motor threshold (top) and the decrease of motor threshold with increasing age (middle).
When motor threshold and TMS-evoked N100 amplitude values of adult subjects are taken into consideration (motor threshold $40-50 \%$ of the maximum Magstim 200 output and TMS-evoked N 100 amplitude $10-30 \mu \mathrm{~V}[1-3]$; see also the box plots on the bottom), the notion of a decrease of motor threshold and TMSevoked N100 amplitude at near motor threshold intensities evoked N 100 amplitude at near motor threshold intensities through school age is furthermore strongly supported. The decrease of TMS-evoked $N 100$ amplitude at the same intensity
relative to motor threshold with increasing age is one of the relative to motor threshold with increasing age is one of the
main results of this study. main results of this study
Bottom: Box plots illustrating the differences in TMSevoked N100 amplitude for 6.8 to 10.0 year-old children and young adult subjects at 50% maximum stimulator output.
The median is indicated within the box, the box represents the quartiles, the whiskers outline the range except for outliers which are indicated separately by points.

Fig. 5:
Scatterplot illustrating stimulus-intensity dependence of TMS-evoked N100 at CP6. dependence of TMS-evoked N100 at CP6.
On the abscissa, absolute stimulator output values On the abscissa, absolute stimulator output values
are given. Please note that except for 3 subjects are given. Please note that except for 3 subjects
where this would have exceeded the maximum where this would have exceeded the maximum
stimulator output (intensity was set to 100% stimulator output (intensity was set to 100%
maximum stimulator output), for all subjects the maximum stimulator output), for all subjects the applied intensity was adjusted to 105% of resting
motor threshold (same relative but not absolute motor threshold (same relative but not absolute stimulus intensity).

Conclusions:

1.) N100 amplitude reduction during late CNV provides further evidence that TMSevoked N100 is an inhibitory surface-negative potential which could be caused by inhibitory post-synaptic potentials from deeper cortical layers. Parallels between the inhibitory N100 after TMS (provoking a massive synchronous excitation) and the wave-component of the typical epileptic spike-wave complex (also representing massive synchronous neuronal action - spike - leading to an inhibitory response via the nucleus reticularis thalami-wave) are tentatively suggested because the long latency of TMS-evoked N100 makes a cortico-thalamo - cortical loop more likely than long-lasting inhibitory postsynaptic potentials within the cortex. TMS-evoked N100 could represent a model of epilepsy research which can be applied directly to humans, opening up a lot of new possibilities.
2.) Response preparation and attention modulates N100, N100 therefore appears to be a more sensitive, independent parameter for cortical excitability than the compound motor evoked potential and seems suitable for the analysis of more complex cognitive processes.
3.) TMS-evoked N100 could be a valuable tool to test cortical integrity and / or inhibitory function in children because children show a much larger N100 amplitude at motor threshold intensity than adults. N100 maturation may reflect pruning processes of inhibitory interneurons.

References:

[1] Komssi S, Kahkonen S, Ilmoniemi RJ. The effect of stimulus intensity on brain responses evoked by transcranial magnetic stimulation. Hum Brain Mapp 2004; 21: 154-64.
[2] Nikulin VV, Kicic D, Kahkonen S, Ilmoniemi RJ. Modulation of electroencephalographic responses to transcranial magnetic stimulation: evidence for changes in cortical excitability related to movement. Eur J Neurosci 2003; 18: 1206-12.
[3] Paus T, Sipila PK, Strafella AP. Synchronization of neuronal activity in the human primary motor cortex by transcranial magnetic stimulation: an EEG study. J Neurophysiol 2001; 86: 1983-90.

This work was supported by the medical young investigator award of the Medical Faculty of the

