Does the EEG response to single pulse transcranial magnetic stimulation (TMS) represent a model for epileptic spike-wave complexes?
Stephan Bender, MD ${ }^{1}$, Rieke Oelkers-Ax, MD ${ }^{2}$, Matthias Weisbrod, MD ${ }^{1}$
${ }^{1}$ Psychiatric Hospital, Section of Experimental Psychopathology, University of Heidelberg, Germany; ${ }^{2}$ Department for Child and Adolescent Psychiatry, Psychiatric Hospital, University of Heidelberg, Germany

Conclusions:
N100 amplitude reducition durino late CNV provides further evidence thet TuS eve 1.) N100 ampilitude reduction during late CNV provides further evidence that TMS-evoked
N100 is an inhibiory surface-enegative potenial which could be caused by inhibitory post-
symatic poteniails from deeper cortical layers. Parallels between the inhibitiory N100 after
 epileptic spike-wave complex (also representing massive synchronous neuronal action-
spike - leading to an inhibiory response via the nucleus reticularis thalami-wave) are spike - leading to an inhibitiory response via the nutceus reticularis thalami-wave) are
tentatively suggestled because the ong latency of TMs evoved Nooo makes a cortictenatively suggested because the long lalency of TMS-evored NTOO makes a coitco-
thalamo - cortical loop more ikely than long-lasting inhibitory postsynapic potenials within the cortex. TMS-evoked N100 could represent a model of epilepsy research which can be applied directly to humans, opening up a lot of new possibilities.
2.) Response preparation and attention modulates N100, N100 therefore appears to be a
more sensitive, independent parameter for cortical excitability than the compound to more sensitive, independent parameter for cortical excitability than the compound moto
evoked potential and seems suitable for the analysis of more complex coonitive processes. evoked potential and seems suitable for the anaysis of more complex coognitive procossses.
3.) TMS-voked 100 could be a valuable tool to test corical integity and / or inhibitory function in children because children show a much larger N100 amplitude at motor
threshold intensity than adults. N100 maturation may refiect pruning procosses of inhibitory interneurons.

References:
i1] Komssi S, Kahkonen S, IImoniemi RJ. The efiect of stimulus intensity on brain responses
 ${ }^{2} 2$ Nikulin V , Kicici D, Kahkonen S , IImoniemi RJ. Modulation of electroencephalographic related to movement. Eur J Neurosci 2003; 18: 1206-12. [3] Bender S ,Basseler K, Sebastian I, Resch F, Kammer T, Oelkers-Ax R, Weisbrod M. Electroencephalographic response to transcranial magnetic stimulation in children: Evidence
(or giant inhibitory potentials. Ann Neurol. 2005; ;5: 58-67.

