MEMORY ACCESS AND CONTEXT INTEGRATION IN SEMANTIC PROCESSING. DIFFERENTIATION BY EVENT RELATED POTENTIALS

Holger Hill, Marion Strube, Friederike Ott, Matthias Weisbrod
Department of Psychiatry, University of Heidelberg, Germany

Fig. 1: Reaction times for both SOAs and the four prime-target relations.
Differences between conditions but not between SOAs are significant.

Fig. 2: GrandAverage ERPs for both SOA groups and all four conditions at
parieto-central electrode site Pz Onset of the target stimus is indicate parieto-central electrode site Pz . Onset of the target stimulus is indicated by the
veritical line. The LPC (delayed P300) following the N400 shows a clear semantic
. Vertical ine. The LPC (delayyd P300) following the N400 shows a clear semantic
distance effect in SOA155. The nonrelated and the direct related condition dififer
significanty in
 Apparentity SOA-dependent semantic distance effects of N400 peak ampilitudes
and peak latencies are due to component overlay by the dominating LPC.

Fig. 3: LPC peak latencies at electrode site Pz. Semantic distance effect for
SOA150 (real-word targets only).

Fig. 4: Early fronto-central ERP-differences between SOAs, electrode site AP2: Positive component peaking at 250 m in SOA 150 only. Negative
deflection with a larger semantic distance effect in SOA 150 peaking around
310 ms

Conclusion

LPC can be classified as a delayed P300 evoked by the lexical decision. Easy detectable stimul show a larger and earlier P300 than more dincult detectable stimuli facilitates the access to related targets and therefore lexical decision - related target words are easier to be detected than indirect and nonrelated targets. At the long SOA spreading activation mainly decays before target onset.
The pseudoword LPC is independent of SOA because pseudowords represented in semantic networks - therefore a facilitated access is impossible. Probably two stages of semantic processing can be differentiated: 1) an access to the semantic network without the necessity of word comprehension
which is indicated by the LPC differences (and probably the early frontal effects), 2) the integration of prime and target into a semantic context, which requires processing of word meaning. According to concepts about controlled semantic processing (e.g. Rugg \& Doyle 1994, Chwill et al. 1998), the context integration of
nonrelated word pairs needs more semantic processing which is expressed in a nonrelated word pairs needs more semantic processing which is
larger N400 amplitude and prolonged RTs, as shown in our data.

Fig. 5: Mean amplitudes for the fronto-central effect (time window $250-350 \mathrm{~ms}$),
the N 400 ($350-450 \mathrm{~ms}$) and the LPC ($450-650 \mathrm{~ms}$) of the four roime-taget the $\operatorname{N400}(350-450 \mathrm{~ms})$ and the $\mathrm{LPC}(450-650 \mathrm{~mm}$) of the four prime-target
relations and the different SOAs. Amplitudes were measured at three

