University of Heidelberg

Neural correlates of visuospatial perspective taking

Stefan Kaiser ${ }^{1}$, Stephan Walter ${ }^{1}$, Ernst Nenning ${ }^{2}$, Christoph Mundt ${ }^{1}$, Kai Vogeley ${ }^{3}$, Matthias Weisbrod ${ }^{1,}$ Christoph Stippich ${ }^{2}$
1 Universitiy of Heidelberg, Department of Psychiatry, ${ }^{2}$ University of Heidelberg, Department of Neuroradiology, ${ }^{3}$ University of Cologne, Department of Psychiatry

Abstract

Background The ability to take the viewpoint of someone else is a constitutive part of spatial and putatively social cognition. A basic requirement is the translocation of the egocentric viewpoint from one's own first person perspective (1PP) to a third person perspective (3PP) of another person. Previously, Vogeley and colleagues showed a network essentially consisting of superior parietal and premotor areas to be involved in these cognitive operations (Vogeley et al 2004). We have modified the original paradigm in order to make it suitable for addressing visuospatial perspective taking in neuropsychiatric patients. This included a reduction of experimental length as well as the introduction of a training session. Thus, the first aim of this study was to replicate the results with this modified paradigm. In addition, we wanted to investigate the effects of gender on neural activity in this spatial perspective taking task, since gender differences in spatial cognition have repeatedly been described.

Methods

22 healthy subjects (11 male / 11 female, mean age $26.6 y$ / $28.4 y$) participated in the study. A virtual scene with an avatar and red balls was presented from different camera viewpoints in a ground view position. In a blocked design participants were either required to count the objects as seen from their own (1PP) or from the avatars perspective (3PP). Images were acquired on a Siemens Trio 3T scanner. Using echo-planar imaging functional images covering the whole brain including the cerebellum with isotropic voxels were acquired with the following parameters: 48 slices of 3.1 mm thickness, matrix size 64×64 with $3.1 \times 3.1 \mathrm{~mm}$ inplane resolution, TR 4000 msec , TE $60 \mathrm{~ms}, 90^{\circ}$ filp angle. In addition, a high resolution sagittal T1 weighted image was acquired.

Data analysis was performed with SPM2. After standard preprocessing procedures functional images were normalized to the MNI templated and smoothed with a kernel of 10 mm FWHM. Using the general linear model t-contrasts for 3PP vs 1PP were computed for each subject. Using SnPM2 the contrast images were entered into a nonparametric permutation test without variance smoothing. Reported p-values are corrected at $\mathrm{p}<0.05$ for the whole brain.

Results
Behavioral data are shown below. A significant interaction between group and condition was found for correctness. Post-hoc testing showed that female participants differed significantly between conditions, but groups did not differ significantly for any condition.

	Male		Female		Interaction Test	
	3 3PP	1 PP	3 3PP	1 PP	$F(1,20)$	p
Reaction Time (ms)	1012 ± 248	881 ± 226	1052 ± 117	971 ± 87	1.84	0.19
Correctness Score (\%)	93.0 ± 3.8	95.4 ± 4.3	91.0 ± 5.5	97.4 ± 1.7	4.62	0.04

Table 1: Behavioural data for both groups and conditions
Group activation maps and respective tables for each group (male/female) are shown below. The direct comparison between groups did not reveal any significant differences at whole brain corrected p-values.

References
Astafiev SV, Stanley CM, Shulman GL, Corbetta M (2004): Extrastriate body area in human occipital cortex responds to the performance of motor actions. Nat Neurosci 7:542-8.
Gallagher HL, Frith CD (2003): Functional imaging of 'theory of mind'. Trends Cogn Sci 7:77-83. Halari R, Sharma T, Hines M, Andrew C, Simmons A, Kumari V (2006): Comparable fMRI activity with differential behavioural performance on mental rotation and overt verbal fluency tasks in healthy men and women. Exp Brain Res 169:1-14.
Jackson PL, Meltzoff AN, Decety $\mathrm{J}(2006)$: Neural circuits involved in imitation and perspective-taking. Neuroimage 31:429-39.
Vogeley K, May M, Ritz A, Falkai P, Zilles K, Fink GR (2004): Neural correlates of first-person perspective as
one constituent of human self-consciousness. J Cogn Neurosci 16:817-27.

Figure 2: SnPM t-maps for male (upper row) and female participants (lower row) thresholded at $\mathrm{p}<0.05$ corrected. T-maps are rendered on the SPM single subject template (left) or overlaid on the T1 weighted structural image of one participant (right).

Region	Cluster Size	T	X	Y	Z
Left Lingual Gyrus	354	15.01	-18	-78	-15
Left Cerebellum		13.23	-9	-87	-21
Right superior frontal gyrus	70	13.93	30	0	60
Right fusiform gyrus	187	12.29	33	-42	-21
Right inferior temporal gyrus		10.78	45	-48	-21
Right inferior parietal gyrus	315	12.10	30	-54	48
Right Precuneus		11.78	9	-75	45
Right lingual gyrus	28	11.56	12	-45	0
Left middle occipital gyrus	99	11.34	-42	-75	3
Right insula	54	11.12	42	18	-9
Right cerebellum	20	11.00	33	-69	-24
Left middle occipital gyrus	40	10.83	-27	-75	-33
Right middle occipital gyrus	22	10.41	39	-81	9
Right anterior cingulate gyrus	67	10.30	6	27	30
Left precuneus	45	9.38	-12	-69	57

Table 2: Activation foci 3PP vs 1PP for male participants

Region	Cluster Size	T	X	y	Z
Right inferior frontal gyrus	12	10.78	48	30	27
Right middle occipital gyrus	51	10.51	30	-78	33
Left superior parietal gyrus	19	10.37	-21	-69	48
Right superior parietal gyrus	11	8.33	24	-63	54
Right inferior parietal gyrus	14	8.25	48	-39	45
Right middle temporal gyrus	13	8.08	42	-72	21

Table 3: Activation foci 3PP vs 1PP for female participants

Discussion
The results for our male participants are consistent with the original study (Vogeley et al. 2004) and show activation of a network essentially involving th superior parietal and the premotor regions during 3PP. However, some interesting differences should be noted. In the present study, activation was more widespread in occipital areas involving the lingual gyrus, which has been shown to be activated when body motions are observed or imitated from 3PP as opposed to 1PP (Jackson et al 2006). Foci in bilateral middle occipital gyrus in close proximity to the extrastriate body area were also found (Astafiev et al 2004). In addition, activity in anterior medial prefrontal cortex was found, which is often involved in classical "theory of mind" tasks but was notably absent in the previous study (Gallagher and Frith 2003). With respect to gender, no significant differences between female and male participants emerged. This seems surprising, because in spatial tasks differences in performance as well as activation patterns have consistently been reported (Halari et al 2006). However, female participants showed fewer significantly activated voxels. Inspection of the single-subject data suggests more heterogeneous activation patterns on the individual level.
In conclusion, the study was replicated after reducing the amount of stimuli at 3 T field strength and showed addifional activation sites including the lingual gyrus, presumably the extrastriate body area and the anterior medial prefrontal cortex. These activations suggest that taking 3PP in the present tasks involves representing the avatar as a human agent.

