TEMPORAL COURSE OF EXECUTIVE CONTROL FUNCTIONS

AN ERP STUDY OF THE STROOP COLOR-WORD INTERFERENCE EFFECT

J. Markela, Ch. Mundt, S. Kaiser, J. Unger, U. Pfüller, M. Weisbrod

Department of Psychiatry, University of Heidelberg, Germany

Introduction

Executive control system regulates information processing and response selection in situations, where routine mechanisms are unavaiable or inadequate (Norman and Shallice 1986, Posner and Dehaene 1994). According to Norman and Shallice thes
situations include planning, error correction, novel or difficult situations and response inhibition. The neural basis of this executive system is thought to be a network involving the anterior cingulate gyrus and prefrontal cortex (Posner and DiGirolamo 1998, Smith and Jonides 1999).
The event-related potential (ERP) studies of Stroop color-word interference effect provide controversial results (Posner \& Rothbart 1998, Liotit et al. 2000). The aim of
this study was to investigate the neurophysiogical interference effect in high density event-related potentials (ERPs). The Stroop ColorWord Test (SCWT) requires executive control functions and particularyy inhibition of a learned routine (in this case word reading).

Methods

Subject:
ERPs. Task: In the SCWT subjects are required to name the color of the word which is itself the name of a color. Subjects are faster to name the color when the color and the wor are congruent (the word red written in red) than when the color and the word are
incongruent (the word red written in blue). This increased response time reflects the incongruent (the word red written in blue). This increased response time reflects the present experiment computer and manual responses were employed. The experiment consisted of three test conditions which were neutral (non word letter strings), congruent and incongruent and two runs (see figure 1). One run consists of one third of each stimulus class, which are randomly presented. Each run consisted of 188 stimuli.
ERPs: EEG was recorded continuously using a 64 -channel Easy Cap
Staistical Analysis: An ANOVA was performed on the behavioral data using reaction times as dependent variable and condition and run as repeated measure variables. On the ERP data we calculated mean amplitudes for the early time window ($350-450$ ms) over frontocentral scalp region and for the late time window ($600-1000 \mathrm{~ms}$) over parietal scalp region. An ANOVA was performed for both time windows with task used for post-hoc comparisons.

Results

Behavioral data: In the reaction time analysis, a robust Stroop color-word interference
effect was observed as indicated by longer mean reaction times for incongruen then effect was observed as indicated by longer mean reaction times for incongruent than congruent words $(F(2,30)=40.7, \mathrm{P}<0.0001$, mean effect size $=109 \mathrm{~ms})$. There was
also significant condition \times run interaction $(\mathrm{F}(2,30)=5.6, \mathrm{P}<0.01)$ (see figure 2$)$. Post hoc tests revealed significantly longer reactions times in the incongruent condition in the first run as compared to the second run ($P<0.01$).
ERP data: ERP revealed the neurophysiological substrate of Stroop color-word interference effect: A first effect consisted of a negativity more pronounced to incongruent than to congruent and neutral words in a $350-450 \mathrm{~ms}$ time window over
left frontocentral scalp region (see figure 3) (main effect of condition $F(2,30)=6.0, \mathrm{P}<$ left frontocentral scalp region (see figure 3) (main effect of condition $F(2,30)=6.0, \mathrm{P}<$
$0.01)$. Later on in time, a prolonged positivity greater to incongruent than to congruent and neutral words was observed in a $600-1000 \mathrm{~ms}$ time window over parietal scalp region (see figure 4) (main effect of condition $F(2,30)=6.8, \mathrm{P}<0.005$).

Figure 2: Mean reaction times for different conditions and both runs.

Conclusion

In the present study, a robust behavioral Stroop color-word interference effect was obtained in the mixed-trial manual version of Stroop task. The neural correlates of this interference effect were explored: ERP data show a biphasic activation which was observed first over leff frontocentral scalp region in a $350-46$
then over parietal scalp region in a $600-1000 \mathrm{~ms}$ time window.
These data clarify the eariier ERP findings of the Stroop interference effect. Posner \& Rothbart (1998) found no differences in temporal and spatial patterns of ERP data for he congruent and incongrueunt conditions. On the contrary, Rebai et al. (1997) reported an interference effect peaking at 400 ms (which was interpreted as an traditional $N 400$) and West and Alain (1999) found a positivity of the slow potential beginning 500 ms
after stimulus onset elicited by the incongruent condition as compared to congruent condition. However Rebai et al. and West \& Alain employed only a few midiline electrodes. Using high density ERPs but only eight subjects Liotti et al. (2000) recently found two Stroop interference effects: a leff-sided early negativity ($350-500 \mathrm{~ms}$) and ate positivity ($500-800 \mathrm{~ms}$). Our study replicated the ERP findings of the temporal attern of Stroop interference effect using high-density ERPs. However, we observed a lighty different spatial pattern of the ERP data than other studies. er positivity effect to the postevaluation of the performance aftiocesses and the been delivered. Taking into account previous neuroimaging studies of Stroop task Pardo et al. 1990, Peterson et al. 1999), the possible neural generator of the negative wave may be the anterior cingulate corte.

References

Lioti M, Woldorff MG, Perez R, Mayberg HS (2000). Neuropsychologia 38, 701-71 Norman DA, Shallice T (1986) In Davidson R, Schwartz G, Shapiro D (eds), Consciousness and self-regulation. New York: Plenum Press, pp 1-18. Pardo JV, Pardo PJ, 256-259. Peterson BS, Skudararki Ps, P,

Biol Psychiatry 45, 1237-58 Posner MI. Dehaene S (1994). Trends Neurosci 17, 75-79.

Posner MI, Dehaene S (1994). Trends Neurosci 17, 75-79. Cambridge: MIT Press, pp 401-423
Posner M, Rothbart MK (1998). Phil Trans R Soc Lond B 353, 1915-1927. Rebai M, Bermard C, Lannou J (1997). Int J Neuroscience 91, 85-94. Smith EE, Jonides J (1999). Science 283, 1657-1661. West R, Alain C (1999). Cogn Br Research 8, 157-164.

Acknowledgements

This work was supported by German Research Community (Deutsche Forschungsgemein
We are grateful to Sabine Meidner for recording and analysing the EEGs.

