Die Lateralisation der neurologischen soft signs ist genetisch bedingt. Erste Ergebnisse der Heidelberger Zwillingsstudie

R. Niethammer (1), M. Weisbrod (1), H. Sauer (2)

(1) Psychiatrische Klinik der Universität
(2) Psychiatrische Klinik Universität Jena

Als neurologische soft signs (NSS) werden diskrete motorische und sensorische Störungen bezeichnet. NSS wurden schon früh bei schizophrenen Psychosen beobachtet (Kraepelin 1913), sind bei schizophrenen Patienten häufiger als bei Kontrollgruppen (Schröder et al. 1992) und sind unabhängig von der neuroleptischen Es wurden 3 Gruppen gebildet: Medikation (Gupta et al. 1995). Erhöhte NSS-Werte fanden (sow schizophrenen Patienten (Rossi et al. 1990) und bei nicht betroffenen diskordanten eineiigen Zwillingen (Torrey 2 . Nicht erkrankte diskordante Zwillinge
schizophrenen Patienten (Rossi et al. 1990) und bei nicht betroffenen diskordanten eineiigen Zwillingen (Torrey ${ }^{\text {et al. 1994). In der vorliegenden Studie solte im Rahmen einer Zwillingsstudie die genetische Grundlage der }}$ 3. Gesunde Zwillinge
NSS untersucht werden.

Patienten und Methode

Untersucht wurden 44 eineiige Zwillinge. 16 Zwillinge waren diskordant für
schizoaffektive Psychose, 10 waren konkordant und 18 eineiige Zwillinge hatten keine psychiatrische Diagnose.
Die Gruppen unterschieden sich nicht im Alter und Geschlecht. Die NSS wurden anhand der Heidelberger NSS-Skala untersucht. Diese Skala beinhaltet 16 items (s. Tabelle). 11 der items wurden für rechts

Diskussion

Unsere Ergebnisse bestätigen die Befunde der NIMH-Zwillingsstudien (Mosher 1971, Torrey 1994), die einen genetischen Einfluß auf die NSS zeigen. Ein neuer Befund unserer Studie ist die Asymmetrie der NSS. Diese Asymmetrie zeigen sowohl die erkrankten Zwillinge als auch die nicht erkrankten diskordanten Zwillinge. Dies legt eine genetische Basis nahe.

Unsere Befunde mit höheren linksseitigen NSS lassen eine rechtshemispärische Störung vermuten. Dies steht im Kontrast zu morphologischen und funktionellen Untersuchungen, die meist eine linkshemisphärische strukturelle Läsion bei schizophrenen Patienten fanden. Torrey (1980) zeigte eine Lateralisation der soft signs zur rechten Körperhälfte hin. Er untersuchte allerdings nur sensorische Funktionen (Graphaesthesie und Hand-Gesichts-Test), während die Heidelberger NSS-Skala verstärkt motorische Funktionen berücksichtigt. Eine genaue Analyse unserer Daten zeigte, daß der stärkste linksseitige Effekt bei motorischen Aufgaben auffrat. Unsere Ergebnisse passen zu den Befunden von Walker et al. (1994), die bei einer Gruppe von schizophrenen Patienten linksseitige motorische Auffälligkeiten in der Zeit vor der Erkrankung fand und zu den Ergebnissen von Schröder et al. (1996). Diese Arbeitsgruppe fand Auffälligkeiten im sensomotorischen Cortex während einer linkshändigen, d.h. nicht dominanten, Handbewegungsaufgabe bei schizophren erkrankten Patienten.

Tab.1: Heidelberger NSS-Skala

Ozeretzki's test
Diadochokinese
Pronation/Supination
Finger-Daumen-Opposition
Artikulation
Gangbild
Seiltänzergang
Zweipunktediskrimination
Finger-Nase-Test
fist-edge-palm-Test
Rechts-links-Orientierung
Hand-Gesichts-Test
Graphaesthesie
Stereognosis
Spiegelbewegungen
Arm-Halte-Versuch

Um genetisch identische Probanden innerhalb der Gruppen auszuschließen, wurde jeweils nur einer eines Zwillingspaares aus der Kontrollgruppe und aus der Gruppe der konkordant Erkrankten eingeschlossen. Die einfaktorielle Varianz-Analyse (ANOVA) der Gesamt-NSS-Scores zeigte einen signifikanten Haupteffekt der Gruppen ($\mathrm{F}(2 / 27$) $=7.17, \mathrm{p}<.01$). Die post-hoc Analyse zeigte signifikant höhere Gesamt-NSS-Scores bei schizophrenen Patienten als bei Kontrollen ($\mathrm{p}<.01$). Die Gesamt-NSS-Scores der nicht betroffenen diskordanten Zwillinge unterschieden sich nicht von den erkrankten ($p=.24$), waren aber signifikant höher als bei den gesunden Z willingen $(p=.03)$.

Um die diskordanten und die gesunden Zwillinge miteinander zu vergleichen, berechneten wir eine ANOVA mit einem repeated measure design und betrachteten Paare als Fälle. Ein Kontroll-Zwilling wurde willkürlich als erkrankt definiert, der andere als nicht erkrankt. Die Zwei-Faktoren-ANOVA zeigte einen hochsignifikanten Haupteffekt für Gruppen mit höheren NSS-Werten bei den diskordanten Paaren ($F(1 / 15$) $=10.3, \mathrm{p}<.01$). Interessanterweise wurde keine signifikante Status-vs- Gruppen-Interaktion gefunden $(F(1 / 15)=.24, p>.6)$. Dies ist ein Hinweis darauf, daß diskordante nicht betroffene Z willinge sich nicht von ihren betroffenen Zwillingspartnern unterscheiden.

Für die 11 NSS-items, die man nach rechts und links getrennt untersuchen kann, wurde ein Rechts- bzw Links-Seiten-Score gebildet. In die Berechnungen wurden nur Rechtshänder eingeschlossen. Die Zwei-Faktoren-ANOVA zeigte eine signifikante Interaktion $(F(2 / 21)=3.4, p=0.05)$. Die Interaktion war dadurch bedingt, daß die gesunden Zwillinge eine symmetrische Verteilung der soft signs zeigten ($p=.7$), während sowohl die schizophrenen ($p<.01$) als auch die nicht erkrankten diskordanten ($p=.06$) Zwillinge linksseitig höhere NSS-Werte aufwiesen. Verglichen mit den Kontrollzwillingen zeigten die schizophrenen Probanden insgesamt erhöhte NSS-Werte, während die nicht erkrankten diskordanten Zwillinge nur linksseitigsig signifikant höhere NSS-Werte aufwiesen. Eine weitere ANOVA mit repeated measure design reb signifiza , Ausfüh der NSS bi (auf der symmetrischen Ausfürrung der NSS bei gesunden Zwillingen ($p=1.0$) und der asymmetrischen mit höheren linksseitigen NSS-Werten bei diskordanten Zwillingen ($p<.01$). Die Gruppe-vs- Status-vsSeite Interaktion war nicht signifikant $(\mathrm{F}(1 / 15)=.81, \mathrm{p}=.38)$ als Hinweis, daß die Asymmetrie der NSS bei erkrankten und bei nicht erkrankten diskordanten Zwillingen gleich war.

NSS_Score

Literatur

1. Kraepelin, E. Psychiatrie. Ein Lehrbuch für Studierende und Ärzte. Johann Ambrosius barth, Leipzig, 1913
2. Schröder J., Niethammer R., Geider FJ, Reitz C., Binkert M., Jauss M., Sauer H.: Neurological soft signs in schizophrenia. Schizophrenia Research 1992; 6, 25-30.
3. Gupta S., Andreasen N., Arndt S., Flaum M., Schultz S., Hubbard W., Smith M.: Neurological Soft Signs in neuroleptic-naive,
neuroleptic-treated schizophrenic patients and in normal comparison subjects. American Journal of Psychiatry 1995; 152, 191-196
4. Rossi A., de Cataldo S., di Michele V., Manna V., Ceccoli S., Stratta P., Cassachia M: Neurological soft signs in schizophrenia. British Journal of Psychiatry 1990; 157 735-739
5. Torrey EF: Schizophrenia and Manic-Depressive Disorder. Basic Books 1994
6. Mosher LR, Pollin W., Stabenau JR: Identical twins discordant for schizophrenia. Archivs of General Psychiatry 1971; 24, 422-430
7.Torrey EF: Neurological abnormalities in schizophrenic patients. Biological Psychiatry 1980; 15, 381-388
7. Walker EF, Savole T., Davis D.: Neuromotor precursors of schizophrenia. Schizophrenia Bulletin 1994; 20, 441-451
8. Schröder J., Wenz F., Baudendistel K., Schad L.R., Knopp M.V.: Sensorimotor cortex and supplementary motor area changes in schizophrenia. British Journal of Psychiatry 1995, 167, 197201
