## "BIOLOGICAL MARKERS" FOR MIGRAINE ?

R. Oelkers ${ }^{1,3}$, K. Grosser ${ }^{3}$, J. Lötsch ${ }^{3,4}$, G. Kobal ${ }^{3}$, M. Weisbrod ${ }^{2}$, F. Resch

(1) Dept. of Child and Adolescent Psychiatry, University of Heidelberg
(2) Dept. of Psychiatry, University of Heidelberg
(3) Dept. of Experimental and Clinical Pharmacology and Toxicology, University of Erlangen
(4) Dept. of Clinical Pharmacology, University of Frankfurt/Main

## Objective

Migraine prevalence in childhood increases while the age of onset decreases. Diagnosis is difficult because of high psychiatric comorbidity and subjectivity of diagnostic criteria. This study was to investigate if visual evoked potential (VEP) parameters could be useful as additional objective criteria, and to further elucidate involvement of two parallel visual pathways in migraine pathophysiology.
Migraine is regarded as a cerebral information-processing disorder associated with central hypersensitivity, which might be at least partly inherited (Gerber and Schoenen, 1998). Visual symptoms and photophobia are common features of migraine, but are not exclusively confined to attacks. Hypersensitivity to light and specific gratings and aliered visual processing (Coleston et al., 1994) were found even in the migraine-free interval. This might be due to affection of two visual pathways in migraine, which has been proposed previously (Diener et al., 1989). The Y geniculate nucleus) and is very sensitive to contrast (Kubovà et al., 1995). It processes movement and luminance. The X system receives input mainly from foveal and perifoveal areas via the parvocellular pathway (ventral layer of the lateral geniculate nucleus) and requires higher luminous intensities. It processes contrast and contour Luminance- and contour processing pathways can be investigated by means of pattern-reversal visual evoked potentials (VEPs). Large patterns (i.e. low spatial frequency, 0.5 and 1 cpd ) are mainly conducted by the $Y$ system, whereas for small patterns ( 2 and 4 cpd ) both the $X$ system and the Y system are involved (Kulikowski, 1978) Thus, VEP parameters (latencies and amplitudes) vary as a function of check size. But pathway affection in migraine has yet not been investigated using electrophysiological methods, since all prior VEP studies were
performed using only one single check size for stimulation. The aim of the present study was to clarify the affection and interaction of these two visual pathways in migraine by means of pattern reversal VEP. For that VEP and interaction of these two visual pathways in migraine by means of patiers
components at four different spatial frequencies were compared to healthy controls.

## Methods

Components of pattern-reversal VEPs were compared between young adult migraineurs ( $\mathrm{n}=26$ ) and healthy volunteers ( $\mathrm{n}=28$ ) in the headache-free interval ( $>72 \mathrm{~h}$ before/after an attack). 13 had migraine without aura (MO, code 1.1) and 13 had migraine with aura (MA, code 1.2, Headache Classification Committee, 1988). Patients were included who reported having episodes of migraine headaches for at least two years (mean $\pm$ SD $17.1 \pm 6.9$ years) and had suffered at least 2 attacks per month in the last quarter year. Only subjects reporting no recurrent
migraine-like headaches or ongoing medication were included into the control group. migrain--like headaches or ongoing medication were included into the control group
Black-and-white checkerboard patterns (contrast $>99 \%$, reversal frequency 1 Hz ) were binocularly presented, spatial frequencies ( $0.5,1,2$, and 4 cpd ) were applied in increasing order, i.e. proceeding from large to small checks. In addition, subjecis had to rate (visual analogue scale): i) the visual discomiort provoked by each patiern
ii) the acoustic discomfort provoked by the white noise used for acoustic shielding, iii) aversive effects (eyeache ii) the acoustic iscoriort provored by the white noise used for acoustic shifding, il) aversive eifects (eyeache, queasy feeling, headache, nausea, dizziness) and iv) the number of illusions (colors, shadows, grids etc.) after
each block.
Statistical analysis was carried out with SPSS for windows, version 7.4. Results were compared by analysis of Staitsical analysis was carried out with spse for windows,
variance (MANOVA) for repeated measures. Subjective ratings were compared using non-parametric tests (Kruskal-Wallis test, Mann-Whitney U test). The a-level was set to 0.05 .



Fig. 2: Latencies of the N2 component (mean + /- SEM) at 2 and 4 cpd each with five consecutive ${ }_{* *}$ Asterisks indicate significant differences between groups:
** 4 cpd: $\begin{aligned} & \text { between-subjekt factor "aura": (MA vs. } \mathrm{MO} \text { vs. } \mathrm{CO} \text { ): } \mathrm{p}=0.000 ; \\ & \text { between-suviekt factor "migraine": (MA }+ \text { MO vs. } \mathrm{CO} \text { ): } \mathrm{p=0.001} .\end{aligned}$

* 2 cpd: $\begin{aligned} & \text { between-subjekt factor "aura": (MA vs. } \mathrm{MO} \text { vs } \mathrm{CO} \text { ): } p=0.046 ; \\ & \text { between-subjekt factor "migraine": (MA }+ \text { MO vs. } C O) \text { : } p=0.017 .\end{aligned}$


## Results

Observed differences were dependent on VEP spatial frequency. Grand means of the VEP recordings are presented in Figure 1. Only at high spatial frequency N2 latency was significantly prolonged in migraineurs. At 4 cpd, latency prolongation was most pronounced in MA patients (first block $186.8 \pm 2.5 \mathrm{~ms}$ ) but also found in MO patients (first block $178.2 \pm 5.3 \mathrm{~ms}$ ) when compared with controls (first block $167.1 \pm 2.2 \mathrm{~ms}$ ). Differences were significant between the three groups at 2 ( $\mathrm{p}<0.05$ ) and 4 cpd ( $\mathrm{p}<0.001$, Figure 2 ). N2 latency at the smallest checksize was longer than 172 ms in $80.7 \%$ of migraineurs but only in $21.5 \%$ of controls (chi-square test: $\mathrm{p}<0.001$ ). N2 latencies at low spatial frequency ( 0.5 and 1 cpd ) were not significantly different between groups. Migraineurs reported significantly more color and figure illusions at all spatial frequencies (Figure 4). The number of illusions increased in both groups when small checks were presented, i.e. at high spatial frequency. The percentage of subjects reporting one to three aversive effects was augmented at high spatial frequencies in migraineurs but not in control subjects. Differences were statistically significant at 2 and 4 cpd ( $p<0.01$ ). Rating of
the white noise used for acoustic shielding revealed significantly higher discomfort in migraineurs at high spatia the white noise used for acoustic shieding revealed signiificanily higher discomior in migraineurs at nigh spaial
frequencies (p<0.05). Rating of visual discomfort was not significantly different between groups, but MA patients tended to experience more visual discomfort at 2 and 4 cpd (data not shown).


Fig. 3: Subjective ratings (visual analogue scales, mean) of VEP recordings at $0.5 \mathrm{cpd}, 1 \mathrm{cpd}, 2 \mathrm{cpd}$ and 4 cpd in
migraine with aura (MA), migraine without aura (MO) and controls (CO).


## Conclusions

Migraineurs have prolonged N 2 latencies when small checks are applied, no differences were found at low spatial frequencies, i.e. when large check sizes were used. VEP parameters vary as a function of check size. The N2
component at low spatial frequencies (N180) is ascribed mainly to the Y system. At high spatial frequencies, the N2 component at low spatial frequencies (N180) is ascribed mainly to the Y system. At high spatial frequencies, the N2
component is a superposition of an earlier contour specific component (called N130) and N180. In migraineurs, compone N2 latency at high spatial frequencies may be due to an attenuated or absent N 130 and/ or a relatively
dely predominant N180 (Figure 5). This might reflect an imbalance of the two visual pathways with relative predominance of the luminance-dependent $Y$ system.
Spatial frequency also influenced the psychophysical ratings. Subjective discomfort and aversive effects similar to symptoms of migraine attacks (eye-ache, queasy feeling, headache, nausea, dizziness) are particularly reported at high spatial frequencies in the migraineur group. The parallelism of objective and subjective findings might indicate that $X$ - $Y$ imbalance as a dysfunction of precortical visual processing might be relevant in migraine pathophysiology and is probably involved in triggering attacks.
Prolonged N2 latency at high spatial frequency may be useful as an additional objective criterion in migraine. It is
currently investigated whether differences i) are specific for migraine ii) are present in childhod marrine can be influenced by a psychotherapeutic pain group programme. For that VEPs of children and adolescents aged can be infiuenced by a psychotherapeutic pain group programme. For that VEPs of children and adolescents aged $6-18$ yrs. with migraine $(n=60)$, tension headache ( $n=60$ ) or without headaches ( $n=60$ ) are investigated. Al
headache patients are asked to take part in a psychotherapeutic pain group programm (Seemann et al, Medical headache patients are asked to take part in a psychoinerapeuitc pain group programm (Seemann et al, Mecoical
Psychology of Heidelberg University). Participants will be reinvestigated 0 and 6 months after termination of the psychotherapeutic group programm to clarify whether or not clinical improvement has influence on VEP parameters.

This work is supported by BMBF (01EC9403) and
by the Pain Research Programme of the Medical Faculty, Heidelberg University.

## References

[^0]
[^0]:    migraine. J. Neurol Neurosurg Psychiatry 1994;57:1208-11.
    Diener HC , Scholz E, Dichgans J, Gerber WD, Jäck A, Bille, A, Niederberger U. Central effects of drugs used in migraine
    prophylaxis evaluated by visual evoked potentials. Ann Neurol 1989:25:125-30.
    Gerber WD. Schoenen J. Biobehavioral corre ates in migraine: the role of
    Gerber WD, Schoenen J. Biobehavioral correlates in migraine: the role of hypersensitivity and information-processing dysfunction. Cephalalgia 1998;18 Suppl 21:5-11.
    Kubova Z. Kuba M. Spekreise H. Blakemore C. Cos.
    Kubová Z, Kuba M, Spekreijse H, Blakemore C. Contrast dependence of motion-onset and pattem-reversal evoked potentials. Kulikowski JJ. Pattem and
    Kuikowsi J. Pation and movement detection in man and rabbit: Separation and comparison of occipital potentials.
    Oelkers R. Grosser K Le,
    allerations depend on pattern spatial frequency. Brain 122:1147-55, 1999.

