Geschlechtsspezifische Unterschiede in der Kognition von schizophrenen Patienten

Eva Hornberger ${ }^{1}$, Stephan Weiland ${ }^{2}$, Peter Parzer ${ }^{3}$, Matthias Weisbrod ${ }^{1}$, Daniela Roesch-Ely ${ }^{1}$
${ }^{1}$ Psychiatrische Klinik der Universität Heidelberg, ${ }^{2}$ Psychiatrisches Zentrum Nordbaden, Wiesloch,
${ }^{3}$ Abteilung Kinder- und Jugendpsychiatrie der Universität Heidelberg

EINLEITUNG

In der Schizophrenie sind kognitive Defizite, vor allem die, die im Zusammenhang mit dem präfrontalen Kortex stehen, bestimmend für den psychosozialen Krankheitsausgang der Patienten (1). Einige Studien geben Hinweise darauf, dass sich schizophrene Männer und Frauen hinsichtlich präfrontaler kognitiver Defizite unterscheiden (2,3). Andere wiederum haben keine Unterschiede gefunden (4). In der Vergangenheit konnte gezeigt werden, dass Geschlechtshormone wie Östrogen (5) und Nebenwirkungen von Neuroleptika (Hyperprolaktinämie) als Modulator der Kognition eine Rolle spielen (6). Das Ziel dieser Studie ist es die verschiedenen Domänen des Arbeitsgedächtnisses (AG) und die exekutiven Kontrollfunktion, beides Funktionen des präfrontalen Kortex, in Abhängigkeit von Geschlecht be Schizophrenen und gesunden Probanden zu untersuchen und sie mit Hormonstatus und Psychopathologie in Beziehung zu setzen.

METHODE

Versuchspersonen:

Es wurden 40 schizophrene Patienten (20 Männer und 20 Frauen), zum Zeitpunkt der Testung in stationärer Behandlung, partiell remittiert und unter Behandlung von atypischen Neuroleptika, sowie 20 männliche und 20 weibliche gesunde Kontrollprobanden in die Studie eingeschlossen. Die Gruppen wurden nach Alter und Bildung angeglichen und der verbale IQ (MWT-B (7)) wurde erfasst.
Neuropsycholgische Testbatterie:
Wir verwanden eine computerisierte Testbatterie, entwickelt aus der Abteilung für Kinder- und Jugendpsychiatrie der Universität Heidelberg, die akustisches, visuell-räumliches und visuell-figurales Arbeitsgedächtnis, sowie mit einem Dual Task die exekutive Kontrolfunktion untersucht. Für eine schematische Darstellung der Tests siehe Abbildung 1. Zusätzlich erfassten wir die allgemeine Konzentrationsleistung mit dem d2-Aufmerksamkeits-Belastungstest (8).

Modulatorische Variablen

Hormonstatus (Östradiol und Prolaktin), extrapyramidale Symptome (EPS Skala) und Psychopathologie (BPRS, SANS, SAPS) wurden erhoben.

3) Figurales AG

Abbildung 1 - Schematische Darstellung der Tests zu AG und exekutiver Kontrolle

ERGEBNISSE

1.) Demographische Daten: Männl. und weibl. Patienten und Kontrollen unterscheiden sich nicht in Hinblick auf Alter und Bildung. Patienten haben einen signifikant niedrigeren verbalen IQ-Score als Kontrollen $(F(1,68)=18,71 ; p<.0001)$, eine Interaktion für Geschlecht besteht nicht (s. Tabelle 1).

	Männliche Patienten $\mathrm{N}=20$	SD	Weibliche Patienten $\mathrm{N}=20$	SD	Männliche Kontrollen $\mathrm{N}=20$	SD	Weibliche Kontrollen $\mathrm{N}=20$	SD	P
Alter (Jahre)	32,30	7,11	34,20	7,16	32,90	7,83	33,90	9,55	. 80
verbaler IQ	110,52	13,32	105,06	12,08	121,28	11,67	120,56	14,16	. 44
Akustisches AG	6,17	1,74	6,13	2,77	6,95	1,75	7,09	1,43	. 83
Räumliches AG	12,08	2,42	12,83	4,65	10,45	2,50	9,68	1,94	. 27
Figurales AG	6,68	3,45	6,79	4,18	4,23	3,22	4,72	3,38	. 81
Single-ak-Korr (\%)	95,26	7,54	86,94	20,87	98,75	3,58	98,50	4,62	. 12
Single-ak-RT (ms)	373,42	33,3	394,17	70,44	339,15	31,09	354,10	47,97	. 79
Single-vis-Korr (\%)	97,89	5,09	90,56	11,74	99,25	2,45	98,75	2,22	.02*
Single-vis-RT (ms)	414,89	46,15	455,94	57,89	402,40	42,22	415,50	31,81	. 18
Dual-Korr (\%)	88,40	10,55	78,93	15,59	96,19	3,49	96,54	3,45	.03*
Dual-RT (ms)	432,26	50,23	464,39	71,74	413,00	38,36	430,50	24,91	. 51
D2-Score	135,47	52,37	117,83	39,65	193,20	62,35	181,30	36,69	. 54
Tabelle 1 - Mittelwert und Standardabweichung (SD) von Alter, verbalem IQ und neuropsycholgischen Testscores von männlichen und weiblichen Patienten und Kontrollen									

2.) Neuropsychologische Daten (s. Tabelle 1): Wir führten separate multifaktorielle ANOVAS durch, für jeden Score der neuropsychologischen Testbatterie als abhängige Variable und Gruppe (Patienten und Kontrollen) und Geschlecht als unabhängige Variable. Patienten schnitten in allen Testscores schlechter ab als die Kontrollen. Bei den Kontrollen unterscheiden sich Männer und Frauen nicht in ihrer Leistung, Bei den Patienten gab es keine Unterschiede zwischen Männern und Frauen in den einfachen Arbeitsgedächtnistests (akustisch und visuell). Jedoch haben die Patientinnen beim Test zur exekutiven Kontrollfunktion weniger korrekte Antworten im visuellen Single Task ($F(1,73=5,44 ; p=.02$) und im Dua Task insgesamt $(F(1,73)=4,99 ; p=.03)$ ($s . A b b$ ildung 2). Bei weiterführende ANCOVAS mit IQ und Konzen-
trationsleistung als Kovariable verlor die Interaktion im visuellen Single Task ihr Signifikanzniveau und es fand sich nur noch im Dual Task eine signifikante Interaktion von Gruppe und Geschlecht für die Anzahl der korrekten Antworten ($F(1,63)=4.63 ; p=.04$), bedingt durch die Interaktion im visuellen Dual Task ($F(1,63)=4.31 ; p=.04$). Nach Bonferroni-Korrektur zeigt sich, dass die Patientinnen im Dual Task schlechter abschneiden als die männlichen Patienten ($\mathrm{p}=.02$), bedingt vor allem durch die visuelle Modalität ($\mathrm{p}=.01$).
3.) Klinische Daten (s. Tabelle 2): Schizophrene Männer und Frauen unterscheiden sich nicht in der Dauer der Erkrankung und Anzahl der Hospitalisierungen. Es fand sich ein Trend für ein jüngeres Alter der Männer bei Erkrankungsbeginn ($p=.09$). Es gibt keinen Unterschied in Psychopathologie, extrapyramidalem Symptom-Score oder Medikamentendosis (CPZ-Äquivalent).

	Männliche Patienten $\mathrm{N}=20$	SD	Weibliche Patienten $\mathrm{N}=20$	SD	P
EPS	$\mathbf{0 , 2 0}$	0,19	$\mathbf{0 , 3 2}$	0,28	.24
BPRS	$\mathbf{3 9 , 2 1}$	10,23	$\mathbf{3 5 , 5 3}$	10,33	.28
SANS	$\mathbf{4 0 , 1 6}$	17,32	$\mathbf{2 9 , 3 7}$	24,86	.13
SAPS	$\mathbf{1 7 , 2 6}$	15,15	$\mathbf{1 3 , 6 8}$	16,72	.49
Krankheitsdauer (J)	$\mathbf{6 , 8 3}$	6,1	$\mathbf{5 , 1 1}$	6,44	.39
Hospitalisierung (Anzahl)	$\mathbf{2 , 7 5}$	1,97	$\mathbf{2 , 5 0}$	2,40	.72
Age of Onset (J)	$\mathbf{2 5 , 3 5}$	5,86	$\mathbf{2 9 , 1 0}$	7,58	$.09^{\star}$
CPZ-Äquivalent (mg)	$\mathbf{5 6 1 , 5 0}$	504,33	$\mathbf{4 6 0 , 8 4}$	308,56	.46
	*statisticher Trend für Age of Onset zw. männl. und weibl. Patienten				

Tabelle 2 - Mittelwert und Standardabweichung (SD) von extrapyr. Symptom-Score, Psychopathologie und CPZ-Äquvalent-Dosis von männlichen und weiblichen Patienten

Abbildung 2 - Box Plots der durchschnittlichen Anzahl von richtigen Antworten im Dual Task von Kontrollen und Patienten
4.) Hormone: Bei den Patienten zeigten die Frauen mit höheren Prolaktinspiegeln mehr korrekte Antworten und schnellere Reaktionszeiten in dem Test der exekutiven Kontrollfunktion. Bei den männlichen Patienten fanden wir keinen signifikanten Effekt des Prolaktinspiegels. Bei den weiblichen Patienten trat eine negative Korrelation von Östradiolspiegel und Anzahl der korrekten Antworten im Dual Task ($r=-.52$) bei stärkerer Ausprägung der Positivsymptome (SAPS) ($p=-.65$) auf.

DISKUSSION

Diese Studie zeigt die Abwesenheit von Geschlechtsunterschieden bei Schizophrenen im akustischen und visuellen Arbeitsgedächtnis. Beim Test zur exekutiven Kontrollfunktion jedoch zeigten nach Kontrolle von Konzentrationsleistung und $I Q$ die weiblichen Patienten mehr Defizite als die männlichen Schizophrenen. Männer und Frauen waren gut gematcht und unterschieden sich nicht in Hinblick auf Alter, Bildung, Psychopatholgie und anderer klinischer Variablen. Ein Stichprobenfehler wie Einschluss von Patientinnen mit abnorm jungem Alter bei Erkrankungsbeginn, denen eine schlechtere Prognose zugeschrieben wird, war in dieser Studie nicht der Fall (9). Einen negativen Einfluss einer neuoleptikainduzierten Hyperprolaktinämie auf die Kognition konnten wir nicht bestätigen, ebensowenig einen positiven Einfluss von Östrogen, im Gegensatz zu Kimura (10). Da in unserer Studie bei den Patientinnen Zusammenhänge von Prolaktinspiegel und Neuroleptikatyp mit exekutiver Kontrollfunktion auftraten, empfehlen wir weitere geschlechtsspezifische Untersuchungen von kognitiven Effekten atypischer Neruoleptika in der Schizophrenie.

LITERATUR

1. Green, M.F., What are the functional consequences of neurocognitive deficits in schizophrenia?
2. Am J Psychiatry, 1996. 153(3): p. 321-30.
3. Cadenhead, K., et al., Information processing deficits of schizophrenia patients: relationship to clinical ratings, gender
and medication status. Schizophr Res., 1997. 28(1): p. 51-62.
4. Gol J Psychiatry, 1998. 155(10): p. 1358-64
5. Goldberg. T., et al., Lack of sex differences in the neuropsychological performance of patients with schizophrenia.
6. Am J Psychiatry, 1995. 152(6): p. 883-8.
7. Hoff, A., et al., Association of estrogen levels with neuropsychological performance in women with schizophrenia.
8. Keefe, R J Ps Anchiatry, 2001. 158(7): p. 1134-9. Clinical Antipsychotic Trials of Intervention Effectiveness (CATIE
9. Keefe, R., et al., Neurocognitive assessment in the Clinical Antipsychotic Trials of Intervention Effectiveness (CATIE)
project schizoohrenia trial: development, methodology, and rationale. Schizophr Bull, 2003. 29(1): p. 45-55.
project schizophrenia trial: development, methodology, and rationale. Schizophr Bul, 200.
10. Lehri, S., Mehrfach-Wortschatz-Intelligenztest MWT-B. 1977, Ellangen: Straube.
11. Brickenkamp, R., Test d2 Aufmerksamkeits-Belastungs-Test. 1981, Verlag für Psychologie (Hogrefe):
12. Brickenkamp, R., Test d2 Aufmerksamkeits-Belastungs-Test. 1981, Verlag für Psychologie (Hogrefe):
13. Hafner, H... Gender differences in
14. Hafner, H., Gender differences in schizophrenia. Psychoneuroendocrinology, 2003. 28(Suppl 2): p. 17-54.
15. Kimura, D., Sex, sexual orientation and sex hormones influence human citione
16. Kimura, D., Sex, sexual orientation and sex hormones influence human cognitive function
urr Opin Neurobiol., 1996. 6(2): p. 259-63.

Danksagung

Diese Studie wurde unterstützt mit einem "Investigator Initiated Trial Grant" vom "Lilly Centre for Women's Health"

