AG Artificial Intelligence in Cardiovascular Medicine
Belongs to Klinik für Herzchirurgie and Klinik für Kardiologie, Angiologie, Pneumologie
News
May the 4th be with you: Join Jun. Prof. Dr. Sandy Engelhardt for her talk Mitral Valve Repair 4.0: AI, 3D-Printing and Augmented Reality at the King's College London 10th of May 1pm London time
May the 4th be with you: Jun. Prof. Dr. Sandy Engelhardt will give a speech about Technology for Efficient Analysis (AI) in Congenital Heart Disease at Joint Annual Meeting ISMRM-ESMRMB & ISMRT 31st Annual Meeting in London, UK May 9th 10.15am London time
April 19, 2022: AICM organized parts of the eCardiology workshops @ DKGJahrestagung
April 15, 2022 - The AdaptOR MICCAI challenge 2022 is now open!
Feb 7, 2022: We will co-organize the 2nd edition of the DGM4MICCAI 2022 Workshop! See you in Singapore!
Feb 7, 2022: Our journal paper Posterior temperature optimized Bayesian models for inverse problems in medical imaging from our PhD student Malte Tölle was accepted in Elsevier Medical Image Analysis! Congratulations!
Dec 06, 2021 - The Miccai 2021 "AdaptOR Challenge: Deep Generative Model Challenge for Domain Adaption in Surgery" is re-opened and datasets are released under CC BY-NC-SA Licence.
November 13, 2021: We congratulate our PhD students Lalith Sharan and Roger Karl for winning the INFORMATICS4LIFE Poster Award 2021.
November 11,2021: Our talk from the Visual Intelligence Seminar Norway is online now.
October 10,2021: Register for the ELLIS Life Annual Symposium 2021 on Oct 29, 2021, organized
by the ELLIS Unit Heidelberg. We will give a talk on our latest work on AI & Medical Image Processing.
August 31, 2021 Our journal paper "Mutually improved endoscopic image synthesis and landmark detection in unpaired image-to-image translation" from our PhD student Lalith Sharan was accepted in IEEE JBHI! Congratulations!
News Archive
July 8, 2021: Our paper "A Mean-Field Variational Inference Approach to Deep Image Prior for Inverse Problems in Medical Imaging" from our PhD student Malte Tölle was accepted and presented at MIDL2021!
July 2, 2021: Lalith Sharan, our PhD student presented a poster on Quantitative Endoscopic Image Analysis at the MIDL Doctoral Symposium, 2021.
May 21, 2021: We congratulate our medical student Julian Kuhm for receiving the Kaltenbach-Doktorandenstipendium (Scholarship) from the Deutschen Herzstiftung e.V.!
May 17, 2021: We will give a talk on AI in Multisystem Inflammatory Syndrome in Children (MIS-C) in the Special Theme Session II at FIMH 2021.
May 07, 2021: AdaptOR is featured as challenge of the month on Computer Vision News!
April 28, 2021: We are co-organizing the first "Deep Generative Models 4 MICCAI" (DGM4MICCAI) workshop.
April 07, 2021: Research of the month: Our IEEE TMI publication on Cardiac MRI analysis was featured on Computer Vision News. Preprint
April 06, 2021: We are organizing the MICCAI AdaptOR Challenge 2021. Data is now available: https://adaptor2021.github.io/
April 01, 2021: Malte Tölle, MSc. joined our team as PhD student. Welcome!
About Us
Modern hospitals generate a vast amount of heterogeneous digital data e.g. in form of multimodal medical images, diagnostic reports, genetic information or real-time sensor streams. One core idea of precision medicine is to utilize such information for making predictions that assist in optimal treatment selection on a case-by-case basis. However, there persists an unmet clincial need to integrate such records for automatic processing, querying and adequate visualization along the entire treatment path.
The goal of our newly established working group is to leverage methods from the field of Artificial Intelligence for the analysis of heterogenous data collected from patients with cardiovascular diseases. We will especially focus on exploiting the potential of multimodal time-resolved cardiac images, such as Echocardiography, MRI, CT and Endoscopy for objective decision support in diagnosis and treatment. Beyond that, we continuously work in the direction of increasing the safety of surgical and interventional cardiovascular procedures. For example, building customized surgical training modules and intraoperative assistance systems are an integral part of our research topics.
It is our strong belief that research can only thrive through collaboration, hence we follow a translational approach and work very closely together with clinical partners. This enables us to address highly relevant clinical questions at the interface of cardiac surgery, cardiac intervention and cardiology. The recently established „Informatics 4 life“ consortium provides us with the optimal conditions to achieve this mission and to contribute towards the heart center of the future.
Head
Jun. Prof. Dr. Sandy Engelhardt
Focus
Medical Image Processing, Deep Learning, Computer-assisted Surgery
Projects
Supplemental Material
Augmented Reality and Deep Generative Models in Endoscopy
The AdaptOR challenge 2022 is now open!
Surgical Simulation with 3D Printing
Training Reconstructive Mitral Valve Surgery on Patient-Specific Mitral Valve Models (Youtube)
Temporal Views of Flattened Mitral Valve Geometries (Youtube)
Deep Cardiac MRI processing
Team
Head of research group
-
Jun. Prof. Dr. Sandy Engelhardt
Focus
Medical Image Processing, Deep Learning, Computer-assisted Surgery
Research Fellows
-
Roger Karl, M.Sc.
Focus
Hemodynamic simulators and patient-specific replicas in Cardiovascular medicine
-
Sven Köhler, M.Sc.
Focus
Computer Vision, Deep Learning and Motion analysis in Cardiovascular medicine
Medical students
-
Samantha Fischer
Focus
Simulating Mitral Valve Repair Surgeries with Patient-Specific Silicone Valve Models
-
Arman Ghanaat
Focus
Deep learning-based coronary artery analysis of coronary CT angiography-data
-
Josephin Marx
Focus
Creation of patient-specific 3D models for mitral valve reconstruction and interventional procedures: comparison of pathologies and forms of therapy
-
Christina Wang
Focus
Surgical Training of Mitral Valve Reconstruction on Patient-Specific Simulators for Quantification of the Learning Progress
Research assistant
Student members
Alumni
Alexander Rogausch
Antonia Stern
Florian Ritzmann
Halvar Kelm
Jean-Luc Busch
Jonathan Kloss
Julian Brand
Robert Kreher
Simon Sauerzapf
Ulrike Schnaithmann
Recent publications
Recent Publications
Laves, M.H., Tölle, M., Schlaefer, A., Engelhardt, S.
Posterior temperature optimized Bayesian models for inverse problems in medical imaging
In: Medical Image Analysis Volume 78 May 2022
PDF| BibTeX | Repo
Koehler, S., Sharan, L., Kuhm, J., Ghanaat, A., Gordejeva, J., Simon, N. K., Grell, N. M., André, F., Engelhardt, S.
Comparison of Evaluation Metrics for Landmark Detection in CMR Images
In: Bildverarbeitung in der Medizin (BVM), Informatik aktuell. Springer Vieweg, Wiesbaden 2022
Repo | Preprint
Burger, L., Sharan, L., Fischer, S., Brand, J., Hehl, M., Romano, G., Karck, M., De Simone, R., Wolf, I., Engelhardt, S.
Comparison of Depth Estimation Setups from Stereo Endoscopy and Optical Tracking for Point Measurements
In: Bildverarbeitung in der Medizin (BVM), Informatik aktuell. Springer Vieweg, Wiesbaden 2022
Preprint
Laves, M.H., Tölle, M., Schlaefer, A., Engelhardt, S.
Posterior Temperature Optimization in Variational Inference for Inverse Problems.
In: Bayesian Deep Learning Workshop (NeurIPS) 2021
PDF| BibTeX | Repo | Preprint
Sharan, L., Romano, G., Brand, J., Kelm, H., Karck, M., De Simone, R., Engelhardt, S.
Point detection through multi-instance deep heatmap regression for sutures in endoscopy
In: International Journal of Computer Assisted Radiology and Surgery 2021
PDF| BibTeX | Repo | Preprint
Cordes, J., Enzlein, T., Marsching, C., Hinze, M., Engelhardt, S., Hopf, C., Wolf, I.
M2aia—Interactive, fast, and memory-efficient analysis of 2D and 3D multi-modal mass spectrometry imaging data
In: GigaScience, Volume 10, Issue 7, July 2021
PDF| BibTeX
Toelle, M., Laves, M., Schlaefer, A.
A Mean-Field Variational Inference Approach to Deep Image Prior for Inverse Problems in Medical Imaging
In: MIDL 2021
PDF
Sharan, L., Romano, G., Koehler, S., Kelm, H., Karck, M., De Simone, R., Engelhardt, S.
Mutually improved endoscopic image synthesis and landmark detection in unpaired image-to-image translation
In: IEEE JBHI 2021
PDF| BibTeX | Preprint| Repo
Friedrich, S., Groß, S., König, I. R., Engelhardt, S., Bahls, M., Heinz, J., Huber, C., Kaderali, L., Kelm, M., Leha, A., Rühl, J., Schaller, J., Scherer, C., Vollmer, M., Seidler, T., Friede T.
Applications of AI/ML approaches in cardiovascular medicine: A systematic review with recommendations
In: European Heart Journal - Digital Health 2021
PDF| BibTeX
Koehler, S., Hussain, T., Blair, Z., Huffaker, T., Ritzmann, F., Tandon, A., Pickardt, T., Sarikouch, S., Latus, H., Greil, G., Wolf, I., Engelhardt, S.
Unsupervised Domain Adaptation from Axial to Short-Axis Multi-Slice Cardiac MR Images by Incorporating Pretrained Task Networks
In: IEEE Transactions on Medical Imaging 2021
PDF| BibTeX | Preprint| Repo
Stern, A., Sharan, L., Romano, G., Koehler, S., Karck, M., De Simone, R., Wolf, I., Engelhardt, S.
Heatmap-based 2D Landmark Detection with a Varying Number of Landmarks
In: Bildverarbeitung für die Medizin (BVM), Informatik aktuell. Springer Vieweg, Wiesbaden 2021
PDF| BibTeX | Preprint
Garrow, C. R., Kowalewski, K., Li, L., Wagner, M., Schmidt, M. W., Engelhardt, S., Hashimoto, D. A., Kenngott, H. G., Bodenstedt, S., Speidel, S., Müller-Stich, B. P., Nickel, F.
Machine Learning for Surgical Phase Recognition: A Systematic Review
In: Annals of Surgery 2020
PDF | BibTeX
Engelhardt, S., Sharan, L., Karck, M., De Simone, R., Wolf, I.
Generative Adversarial Networks for Stereoscopic Hyperrealism in Surgical Training
In: Bildverarbeitung für die Medizin (BVM) 2020
PDF | BibTeX | BVM2020Talk
Lichtenberg, N., Eulzer, P., Romano, G., Brcic, A., Karck, M., Lawonn, K., de Simone, R., Engelhardt, S.
Mitral valve flattening and parameter mapping for patient-specific valve diagnosis
In: International Journal of Computer Assisted Radiology and Surgery 2020
PDF | BibTeX
Wang, D.D., Qian, Z., Vukicevic, M., Engelhardt, S., Kheradvar, A., Zhang, C., Little, S.H., Verjans, J., Comaniciu, D., O’Neill, W.W., Vannan M.A.
3D Printing, Computational Modeling, and Artificial Intelligence for Structural Heart Disease
In: JACC: Cardiovascular Imaging, Volume 14, Issue 1, January 2021
PDF | BibTeX
Xiong, Z., Xia, Q., Hu, Z., Huang, N., Bian, C., Zheng, Y., Vesal, S., Ravikumar, N., Maier, A., Yang, X., Heng, P., Ni, D., Li, C., Tong, Q., Si, W., Puybareau, E., Khoudli, Y., Géraud, T., Chen, C., Bai, W., Rueckert, D., Xu, L., Zhuang, X., Luo, X., Jia, S., Sermesant, M., Liu, Y., Wang, K., Borra, D., Masci, A., Corsi, C., Vente, C., Veta, M., Karim, R., Preetha, C. J., Engelhardt, S., Qiao, M., Wang, Y., Tao, Q., Nuñez-Garcia, M., Camara, O., Savioli, N., Lamata, P., Zhao, J.
A Global Benchmark of Algorithms for Segmenting the Left Atrium from Late Gadolinium-Enhanced Cardiac Magnetic Resonance Imaging
In: Medical Image Analysis, Volume 67, January 2021
PDF | BibTeX | Preprint
Sharan, L., Burger, L., Kostiuchik, G., Wolf, I., Karck, M., De Simone, R., Engelhardt, S.
Domain gap in adapting self-supervised depth estimation methods for stereo-endoscopy
In Current Directions in Biomedical Engineering (CDBME) 2020 - (3rd Place CURAC Best Poster Award)
PDF | BibTeX
Kreher, R., Groscheck, T., Qarri, K., Preim, B., Schmeisser, A., Rauwolf, T., Christian, R., Engelhardt, S.
A Novel Calibration Phantom for Combining Echocardiography with Electromagnetic Tracking
In: Current Directions in Biomedical Engineering (CDBME) 2020
PDF | BibTeX | Calibration Phantom
Koehler, S., Tandon, A., Hussain, T., Latus, H., Pickardt T., Sarikouch, S., Beerbaum, B., Greil, G., Engelhardt, S., and Wolf, I.
How well do U-Net-based segmentation trained on adult cardiac magnetic resonance imaging data generalize to rare congenital heart diseases for surgical planning?
In: Proc. SPIE 11315, Medical Imaging 2020: Image-Guided Procedures, Robotic Interventions, and Modeling, 113151K (16 March 2020)
PDF | BibTeX | Preprint
Preetha, C.J., Wehrtmann, F.S., Sharan, L., Fan, C., Kloss, J., Müller-Stich, B.P., Nickel, F., Engelhardt, S.
Towards augmented reality-based suturing in monocular laparoscopic training
In: Proc. SPIE 11315, Medical Imaging 2020: Image-Guided Procedures, Robotic Interventions, and Modeling, 113150X (16 March 2020)
PDF | BibTeX | Preprint
Eulzer, P., Engelhardt, S., Lichtenberg, N., De Simone, R., Lawonn, K.
Temporal Views of Flattened Mitral Valve Geometries
In IEEE Trans Vis Comput Graph 2020
PDF | BibTeX | SciVis2019Talk | SciVis2019Preview | Supplemental Material Video
Pfeiffer, M., Funke, I., Robu, R. M., Bodenstedt, S., Strenger, L., Engelhardt, S., Roß, T., Clarkson, M.J., Gurusamy, K., Davidson, B.R., Maier-Hein, L., Riediger, C., Welsch, T., Weitz, J., Speidel, S.
Generating large labeled data sets for laparoscopic image processing tasks using unpaired image-to-image translation
In: Shen D. et al. (eds) Medical Image Computing and Computer Assisted Intervention – MICCAI 2019
PDF | BibTeX | Preprint | Dataset | Code
Engelhardt, S., Sharan, L., Karck, M., De Simone, R., Wolf, I.
Cross-Domain Conditional Generative Adversarial Networks for Stereoscopic Hyperrealism in Surgical Training
In: Shen D. et al. (eds) Medical Image Computing and Computer Assisted Intervention – MICCAI 2019
PDF | BibTeX | Preprint | Supplemental Material Video
Engelhardt, S., Sauerzapf, S., Preim, B., Karck, M., Wolf, I., De Simone, R.
Flexible and Comprehensive Patient-Specific Mitral Valve Silicone Models with Chordae Tendinae Made From 3D-Printable Molds
In: IJCARS Special Issue IPCAI 2019
PDF | BibTeX | Preprint | Video
Engelhardt S., De Simone R., Full P.M., Karck M., Wolf I.
Improving Surgical Training Phantoms by Hyperrealism: Deep Unpaired Image-to-Image Translation from Real Surgeries
In: Medical Image Computing and Computer Assisted Intervention – MICCAI 2018
PDF | BibTeX | Preprint
Bernard, O., Lalande, A., Zotti, C., Cervenansky, F., Yang, X., Heng, P.A., Cetin, I., Lekadir, K., Camara, O., Gonzalez Ballester, M.A.; Sanroma, G., Napel, S., Petersen, S., Tziritas, G., Grinias, E., Khened, M., Kollerathu, V.A., Krishnamurthi, G., Rohé, M.M., Pennec, X; Sermesant, M., Isensee, F., Jäger, P., Maier-Hein K.H., Full, P.M., Wolf, I., Engelhardt, S., Baumgartner, C.F., Koch, L.M., Wolterink, J.M., Išgum, I., Jang, Y., Hong, Y., Patravali, J., Jain, S., Humbert, O., Jodoin, P-M.
Deep Learning Techniques for Automatic MRI Cardiac Multi-structures Segmentation and Diagnosis: Is the Problem Solved?
In: IEEE Transactions on Medical Imaging 2018
PDF | BibTeX | Preprint